TU Darmstadt / ULB / TUbiblio

Rule Extraction From Binary Neural Networks With Convolutional Rules for Model Validation

Burkhardt, Sophie ; Brugger, Jannis ; Wagner, Nicolas ; Ahmadi, Zahra ; Kersting, Kristian ; Kramer, Stefan (2022)
Rule Extraction From Binary Neural Networks With Convolutional Rules for Model Validation.
In: Frontiers in Artificial Intelligence, 2022, 4
doi: 10.26083/tuprints-00020098
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Classification approaches that allow to extract logical rules such as decision trees are often considered to be more interpretable than neural networks. Also, logical rules are comparatively easy to verify with any possible input. This is an important part in systems that aim to ensure correct operation of a given model. However, for high-dimensional input data such as images, the individual symbols, i.e. pixels, are not easily interpretable. Therefore, rule-based approaches are not typically used for this kind of high-dimensional data. We introduce the concept of first-order convolutional rules, which are logical rules that can be extracted using a convolutional neural network (CNN), and whose complexity depends on the size of the convolutional filter and not on the dimensionality of the input. Our approach is based on rule extraction from binary neural networks with stochastic local search. We show how to extract rules that are not necessarily short, but characteristic of the input, and easy to visualize. Our experiments show that the proposed approach is able to model the functionality of the neural network while at the same time producing interpretable logical rules. Thus, we demonstrate the potential of rule-based approaches for images which allows to combine advantages of neural networks and rule learning.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Burkhardt, Sophie ; Brugger, Jannis ; Wagner, Nicolas ; Ahmadi, Zahra ; Kersting, Kristian ; Kramer, Stefan
Art des Eintrags: Zweitveröffentlichung
Titel: Rule Extraction From Binary Neural Networks With Convolutional Rules for Model Validation
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Frontiers Media S.A.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Artificial Intelligence
Jahrgang/Volume einer Zeitschrift: 4
Kollation: 14 Seiten
DOI: 10.26083/tuprints-00020098
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20098
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Classification approaches that allow to extract logical rules such as decision trees are often considered to be more interpretable than neural networks. Also, logical rules are comparatively easy to verify with any possible input. This is an important part in systems that aim to ensure correct operation of a given model. However, for high-dimensional input data such as images, the individual symbols, i.e. pixels, are not easily interpretable. Therefore, rule-based approaches are not typically used for this kind of high-dimensional data. We introduce the concept of first-order convolutional rules, which are logical rules that can be extracted using a convolutional neural network (CNN), and whose complexity depends on the size of the convolutional filter and not on the dimensionality of the input. Our approach is based on rule extraction from binary neural networks with stochastic local search. We show how to extract rules that are not necessarily short, but characteristic of the input, and easy to visualize. Our experiments show that the proposed approach is able to model the functionality of the neural network while at the same time producing interpretable logical rules. Thus, we demonstrate the potential of rule-based approaches for images which allows to combine advantages of neural networks and rule learning.

Freie Schlagworte: k-term DNF, stochastic local search, convolutional neural networks, logical rules, rule extraction, interpretability
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-200985
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Künstliche Intelligenz und Maschinelles Lernen
Forschungsfelder
Forschungsfelder > Information and Intelligence
Forschungsfelder > Information and Intelligence > Cognitive Science
Zentrale Einrichtungen
Zentrale Einrichtungen > hessian.AI - Hessisches Zentrum für Künstliche Intelligenz
Hinterlegungsdatum: 13 Mai 2022 13:48
Letzte Änderung: 19 Mai 2022 09:38
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen