TU Darmstadt / ULB / TUbiblio

Unsupervised Clustering Pipeline to Obtain Diversified Light Spectra for Subject Studies and Correlation Analyses

Klir, Stefan ; Fathia, Reda ; Babilon, Sebastian ; Benkner, Simon ; Khanh, Tran Quoc (2022)
Unsupervised Clustering Pipeline to Obtain Diversified Light Spectra for Subject Studies and Correlation Analyses.
In: Applied Sciences, 2022, 11 (19)
doi: 10.26083/tuprints-00021256
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Featured Application: Selection of most diverse light spectra from a larger set of possible candidates to be used in subject studies or for machine learning to find correlations between photometric and other parameters such as psychological, physiological, or preference-based outcome measures.

Abstract: Current subject studies and data-driven approaches in lighting research often use manually selected light spectra, which usually exhibit a large bias due to the applied selection criteria. This paper, therefore, presents a novel approach to minimize this bias by using a data-driven framework for selecting the most diverse candidates from a given larger set of possible light spectra. The spectral information per wavelength is first reduced by applying a convolutional autoencoder. The relevant features are then selected based on Laplacian Scores and transformed to a two-dimensional embedded space for subsequent clustering. The low dimensional embedding, from which the required diversity follows, is done with respect to the locality of the features. In a second step, photometric parameters are considered and a second clustering is performed. As a result of this algorithmic pipeline, the most diverse selection of light spectra complying with a given set of relevant photometric parameters can be extracted and used for further experiments or applications.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Klir, Stefan ; Fathia, Reda ; Babilon, Sebastian ; Benkner, Simon ; Khanh, Tran Quoc
Art des Eintrags: Zweitveröffentlichung
Titel: Unsupervised Clustering Pipeline to Obtain Diversified Light Spectra for Subject Studies and Correlation Analyses
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applied Sciences
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 19
Kollation: 18 Seiten
DOI: 10.26083/tuprints-00021256
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21256
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Featured Application: Selection of most diverse light spectra from a larger set of possible candidates to be used in subject studies or for machine learning to find correlations between photometric and other parameters such as psychological, physiological, or preference-based outcome measures.

Abstract: Current subject studies and data-driven approaches in lighting research often use manually selected light spectra, which usually exhibit a large bias due to the applied selection criteria. This paper, therefore, presents a novel approach to minimize this bias by using a data-driven framework for selecting the most diverse candidates from a given larger set of possible light spectra. The spectral information per wavelength is first reduced by applying a convolutional autoencoder. The relevant features are then selected based on Laplacian Scores and transformed to a two-dimensional embedded space for subsequent clustering. The low dimensional embedding, from which the required diversity follows, is done with respect to the locality of the features. In a second step, photometric parameters are considered and a second clustering is performed. As a result of this algorithmic pipeline, the most diverse selection of light spectra complying with a given set of relevant photometric parameters can be extracted and used for further experiments or applications.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-212563
Zusätzliche Informationen:

This article belongs to the Special Issue Machine Learning and Signal Processing for IOT Applications

Keywords: light clustering; diversified light spectra; spectral embedding; light selection; spectral feature selection

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Adaptive Lichttechnische Systeme und Visuelle Verarbeitung
Hinterlegungsdatum: 06 Mai 2022 12:04
Letzte Änderung: 09 Mai 2022 09:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen