TU Darmstadt / ULB / TUbiblio

On the Importance of Temporal Information for Remaining Useful Life Prediction of Rolling Bearings Using a Random Forest Regressor

Bienefeld, Christoph ; Kirchner, Eckhard ; Vogt, Andreas ; Kacmar, Marian (2022)
On the Importance of Temporal Information for Remaining Useful Life Prediction of Rolling Bearings Using a Random Forest Regressor.
In: Lubricants, 2022, 10 (4)
doi: 10.26083/tuprints-00021279
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Rolling bearings are frequently subjected to high stresses within modern machines. To prevent bearing failures, the topics of condition monitoring and predictive maintenance have become increasingly relevant. In order to efficiently and reliably maintain rolling bearings in a predictive manner, an estimate of the remaining useful life (RUL) is of great interest. The RUL prediction quality achieved when using machine learning depends not only on the selection of the sensor data used for condition monitoring, but also on its preprocessing. In particular, the execution of so-called feature engineering has a major impact on prediction quality. Therefore, in this paper, various methods of feature engineering are presented based on rolling–bearing endurance tests and recorded structure-borne sound signals. The performance of these methods is evaluated in the context of a regression-based RUL model. Furthermore, the way in which the quality of RUL prediction can be significantly improved is demonstrated, by adding further processed, time-considering features.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Bienefeld, Christoph ; Kirchner, Eckhard ; Vogt, Andreas ; Kacmar, Marian
Art des Eintrags: Zweitveröffentlichung
Titel: On the Importance of Temporal Information for Remaining Useful Life Prediction of Rolling Bearings Using a Random Forest Regressor
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Lubricants
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 4
Kollation: 12 Seiten
DOI: 10.26083/tuprints-00021279
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21279
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Rolling bearings are frequently subjected to high stresses within modern machines. To prevent bearing failures, the topics of condition monitoring and predictive maintenance have become increasingly relevant. In order to efficiently and reliably maintain rolling bearings in a predictive manner, an estimate of the remaining useful life (RUL) is of great interest. The RUL prediction quality achieved when using machine learning depends not only on the selection of the sensor data used for condition monitoring, but also on its preprocessing. In particular, the execution of so-called feature engineering has a major impact on prediction quality. Therefore, in this paper, various methods of feature engineering are presented based on rolling–bearing endurance tests and recorded structure-borne sound signals. The performance of these methods is evaluated in the context of a regression-based RUL model. Furthermore, the way in which the quality of RUL prediction can be significantly improved is demonstrated, by adding further processed, time-considering features.

Freie Schlagworte: rolling bearings, remaining useful life, machine learning, feature engineering, condition monitoring, structure-borne sound, random forest, regression
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-212793
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Produktentwicklung und Maschinenelemente (pmd)
Hinterlegungsdatum: 06 Mai 2022 11:20
Letzte Änderung: 09 Mai 2022 06:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen