TU Darmstadt / ULB / TUbiblio

Lightweight Long Short-Term Memory Variational Auto-Encoder for Multivariate Time Series Anomaly Detection in Industrial Control Systems

Fährmann, Daniel ; Damer, Naser ; Kirchbuchner, Florian ; Kuijper, Arjan (2022)
Lightweight Long Short-Term Memory Variational Auto-Encoder for Multivariate Time Series Anomaly Detection in Industrial Control Systems.
In: Sensors, 2022, 22 (8)
doi: 10.26083/tuprints-00021287
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Heterogeneous cyberattacks against industrial control systems (ICSs) have had a strong impact on the physical world in recent decades. Connecting devices to the internet enables new attack surfaces for attackers. The intrusion of ICSs, such as the manipulation of industrial sensory or actuator data, can be the cause for anomalous ICS behaviors. This poses a threat to the infrastructure that is critical for the operation of a modern city. Nowadays, the best techniques for detecting anomalies in ICSs are based on machine learning and, more recently, deep learning. Cybersecurity in ICSs is still an emerging field, and industrial datasets that can be used to develop anomaly detection techniques are rare. In this paper, we propose an unsupervised deep learning methodology for anomaly detection in ICSs, specifically, a lightweight long short-term memory variational auto-encoder (LW-LSTM-VAE) architecture. We successfully demonstrate our solution under two ICS applications, namely, water purification and water distribution plants. Our proposed method proves to be efficient in detecting anomalies in these applications and improves upon reconstruction-based anomaly detection methods presented in previous work. For example, we successfully detected 82.16% of the anomalies in the scenario of the widely used Secure Water Treatment (SWaT) benchmark. The deep learning architecture we propose has the added advantage of being extremely lightweight.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Fährmann, Daniel ; Damer, Naser ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Zweitveröffentlichung
Titel: Lightweight Long Short-Term Memory Variational Auto-Encoder for Multivariate Time Series Anomaly Detection in Industrial Control Systems
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Sensors
Jahrgang/Volume einer Zeitschrift: 22
(Heft-)Nummer: 8
Kollation: 23 Seiten
DOI: 10.26083/tuprints-00021287
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21287
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Heterogeneous cyberattacks against industrial control systems (ICSs) have had a strong impact on the physical world in recent decades. Connecting devices to the internet enables new attack surfaces for attackers. The intrusion of ICSs, such as the manipulation of industrial sensory or actuator data, can be the cause for anomalous ICS behaviors. This poses a threat to the infrastructure that is critical for the operation of a modern city. Nowadays, the best techniques for detecting anomalies in ICSs are based on machine learning and, more recently, deep learning. Cybersecurity in ICSs is still an emerging field, and industrial datasets that can be used to develop anomaly detection techniques are rare. In this paper, we propose an unsupervised deep learning methodology for anomaly detection in ICSs, specifically, a lightweight long short-term memory variational auto-encoder (LW-LSTM-VAE) architecture. We successfully demonstrate our solution under two ICS applications, namely, water purification and water distribution plants. Our proposed method proves to be efficient in detecting anomalies in these applications and improves upon reconstruction-based anomaly detection methods presented in previous work. For example, we successfully detected 82.16% of the anomalies in the scenario of the widely used Secure Water Treatment (SWaT) benchmark. The deep learning architecture we propose has the added advantage of being extremely lightweight.

Freie Schlagworte: anomaly detection, pattern recognition, security
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-212876
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Fraunhofer IGD
Hinterlegungsdatum: 06 Mai 2022 11:08
Letzte Änderung: 09 Mai 2022 09:09
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen