TU Darmstadt / ULB / TUbiblio

A machine-learned interatomic potential for silica and its relation to empirical models

Erhard, Linus C. ; Rohrer, Jochen ; Albe, Karsten ; Deringer, Volker L. (2022)
A machine-learned interatomic potential for silica and its relation to empirical models.
In: npj Computational Materials, 8 (1)
doi: 10.1038/s41524-022-00768-w
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Silica (SiO 2) is an abundant material with a wide range of applications. Despite much progress, the atomistic modelling of the different forms of silica has remained a challenge. Here we show that by combining density-functional theory at the SCAN functional level with machine-learning-based interatomic potential fitting, a range of condensed phases of silica can be accurately described. We present a Gaussian approximation potential model that achieves high accuracy for the thermodynamic properties of the crystalline phases, and we compare its performance (and performance–cost trade-off) with that of multiple empirically fitted interatomic potentials for silica. We also include amorphous phases, assessing the ability of the potentials to describe structures of melt-quenched glassy silica, their energetic stability, and the high-pressure structural transition to a mainly sixfold-coordinated phase. We suggest that rather than standing on their own, machine-learned potentials for silica may be used in conjunction with suitable empirical models, each having a distinct role and complementing the other, by combining the advantages of the long simulation times afforded by empirical potentials and the near-quantum-mechanical accuracy of machine-learned potentials. This way, our work is expected to advance atomistic simulations of this key material and to benefit further computational studies in the field.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Erhard, Linus C. ; Rohrer, Jochen ; Albe, Karsten ; Deringer, Volker L.
Art des Eintrags: Bibliographie
Titel: A machine-learned interatomic potential for silica and its relation to empirical models
Sprache: Englisch
Publikationsjahr: 28 April 2022
Titel der Zeitschrift, Zeitung oder Schriftenreihe: npj Computational Materials
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 1
DOI: 10.1038/s41524-022-00768-w
Zugehörige Links:
Kurzbeschreibung (Abstract):

Silica (SiO 2) is an abundant material with a wide range of applications. Despite much progress, the atomistic modelling of the different forms of silica has remained a challenge. Here we show that by combining density-functional theory at the SCAN functional level with machine-learning-based interatomic potential fitting, a range of condensed phases of silica can be accurately described. We present a Gaussian approximation potential model that achieves high accuracy for the thermodynamic properties of the crystalline phases, and we compare its performance (and performance–cost trade-off) with that of multiple empirically fitted interatomic potentials for silica. We also include amorphous phases, assessing the ability of the potentials to describe structures of melt-quenched glassy silica, their energetic stability, and the high-pressure structural transition to a mainly sixfold-coordinated phase. We suggest that rather than standing on their own, machine-learned potentials for silica may be used in conjunction with suitable empirical models, each having a distinct role and complementing the other, by combining the advantages of the long simulation times afforded by empirical potentials and the near-quantum-mechanical accuracy of machine-learned potentials. This way, our work is expected to advance atomistic simulations of this key material and to benefit further computational studies in the field.

Zusätzliche Informationen:

Artikel-ID: 90

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
TU-Projekte: PTJ|03XP0174A|FestBatt-Daten
DFG|RO4542/4-1|Interatomare Potenti
DFG|STU611/5-1|Von interatomaren Po
Hinterlegungsdatum: 09 Mai 2022 06:05
Letzte Änderung: 03 Jul 2024 02:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen