Zandi, Babak ; Khanh, Tran Quoc (2022)
Deep learning-based pupil model predicts time and spectral dependent light responses.
In: Scientific Reports, 2022, 11
doi: 10.26083/tuprints-00021202
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Although research has made significant findings in the neurophysiological process behind the pupillary light reflex, the temporal prediction of the pupil diameter triggered by polychromatic or chromatic stimulus spectra is still not possible. State of the art pupil models rested in estimating a static diameter at the equilibrium-state for spectra along the Planckian locus. Neither the temporal receptor-weighting nor the spectral-dependent adaptation behaviour of the afferent pupil control path is mapped in such functions. Here we propose a deep learning-driven concept of a pupil model, which reconstructs the pupil’s time course either from photometric and colourimetric or receptor-based stimulus quantities. By merging feed-forward neural networks with a biomechanical differential equation, we predict the temporal pupil light response with a mean absolute error below 0.1 mm from polychromatic (2007 ± 1 K, 4983 ± 3 K, 10,138 ± 22 K) and chromatic spectra (450 nm, 530 nm, 610 nm, 660 nm) at 100.01 ± 0.25 cd/m². This non-parametric and self-learning concept could open the door to a generalized description of the pupil behaviour.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Zandi, Babak ; Khanh, Tran Quoc |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Deep learning-based pupil model predicts time and spectral dependent light responses |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | Springer Nature |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Scientific Reports |
Jahrgang/Volume einer Zeitschrift: | 11 |
Kollation: | 16 Seiten |
DOI: | 10.26083/tuprints-00021202 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21202 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung aus gefördertem Golden Open Access |
Kurzbeschreibung (Abstract): | Although research has made significant findings in the neurophysiological process behind the pupillary light reflex, the temporal prediction of the pupil diameter triggered by polychromatic or chromatic stimulus spectra is still not possible. State of the art pupil models rested in estimating a static diameter at the equilibrium-state for spectra along the Planckian locus. Neither the temporal receptor-weighting nor the spectral-dependent adaptation behaviour of the afferent pupil control path is mapped in such functions. Here we propose a deep learning-driven concept of a pupil model, which reconstructs the pupil’s time course either from photometric and colourimetric or receptor-based stimulus quantities. By merging feed-forward neural networks with a biomechanical differential equation, we predict the temporal pupil light response with a mean absolute error below 0.1 mm from polychromatic (2007 ± 1 K, 4983 ± 3 K, 10,138 ± 22 K) and chromatic spectra (450 nm, 530 nm, 610 nm, 660 nm) at 100.01 ± 0.25 cd/m². This non-parametric and self-learning concept could open the door to a generalized description of the pupil behaviour. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-212024 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Adaptive Lichttechnische Systeme und Visuelle Verarbeitung |
Hinterlegungsdatum: | 04 Mai 2022 13:49 |
Letzte Änderung: | 27 Okt 2023 10:13 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Deep learning-based pupil model predicts time and spectral dependent light responses. (deposited 04 Mai 2022 13:49) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |