TU Darmstadt / ULB / TUbiblio

aC Stark splitting in intense stochastic driving fields with Gaussian statistics and non-Lorentzian line shape

Zoller, P. ; Alber, G. ; Salvador, R. (1981)
aC Stark splitting in intense stochastic driving fields with Gaussian statistics and non-Lorentzian line shape.
In: Physical Review A, 24 (1)
doi: 10.1103/PhysRevA.24.398
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Lorentzian models for laser line shapes lead to qualitatively incorrect results for off-resonance excitation of atoms. This paper is the first attempt to present a theory of the nonperturbative interaction of an atom with a chaotic field (representing multimode laser radiation having strong amplitude fluctuations) with a line shape falling off faster than a Lorentzian. To this end we suggest a stochastic Markovian model for a non-Lorentzian chaotic field. To solve the multiplicative stochastic differential equations describing the atom-field interaction we propose a "marginal characteristic function approach." This not only reproduces our earlier results in a more elegant way and establishes the relationship between approaches used by other authors in a different context, but also provides the simplest possible basis for our present discussion of ac Stark splitting in double optical resonance. While for a chaotic field with a Lorentzian line shape the asymmetry of the two-peaked off-resonance spectrum is reversed for all values of the detuning compared with the monochromatic case, our present model predicts a reversed peak asymmetry only for detunings smaller than a few laser bandwidths in agreement with experiment. The on-resonance spectrum is dominated by the amplitude fluctuations and is only weakly affected by changes of the spectral line shape of the laser.

Typ des Eintrags: Artikel
Erschienen: 1981
Autor(en): Zoller, P. ; Alber, G. ; Salvador, R.
Art des Eintrags: Bibliographie
Titel: aC Stark splitting in intense stochastic driving fields with Gaussian statistics and non-Lorentzian line shape
Sprache: Englisch
Publikationsjahr: 1 Juli 1981
Verlag: APS Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review A
Jahrgang/Volume einer Zeitschrift: 24
(Heft-)Nummer: 1
DOI: 10.1103/PhysRevA.24.398
URL / URN: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.24.39...
Kurzbeschreibung (Abstract):

Lorentzian models for laser line shapes lead to qualitatively incorrect results for off-resonance excitation of atoms. This paper is the first attempt to present a theory of the nonperturbative interaction of an atom with a chaotic field (representing multimode laser radiation having strong amplitude fluctuations) with a line shape falling off faster than a Lorentzian. To this end we suggest a stochastic Markovian model for a non-Lorentzian chaotic field. To solve the multiplicative stochastic differential equations describing the atom-field interaction we propose a "marginal characteristic function approach." This not only reproduces our earlier results in a more elegant way and establishes the relationship between approaches used by other authors in a different context, but also provides the simplest possible basis for our present discussion of ac Stark splitting in double optical resonance. While for a chaotic field with a Lorentzian line shape the asymmetry of the two-peaked off-resonance spectrum is reversed for all values of the detuning compared with the monochromatic case, our present model predicts a reversed peak asymmetry only for detunings smaller than a few laser bandwidths in agreement with experiment. The on-resonance spectrum is dominated by the amplitude fluctuations and is only weakly affected by changes of the spectral line shape of the laser.

Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenphysik
Hinterlegungsdatum: 05 Mai 2022 07:09
Letzte Änderung: 26 Okt 2022 12:03
PPN: 500785007
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen