TU Darmstadt / ULB / TUbiblio

Deriving the Main Cultivation Direction from Open Remote Sensing Data to Determine the Support Practice Measure Contouring

Scholand, Dominik ; Schmalz, Britta (2022)
Deriving the Main Cultivation Direction from Open Remote Sensing Data to Determine the Support Practice Measure Contouring.
In: Land, 2022, 10 (11)
doi: 10.26083/tuprints-00021199
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The P-factor for support practice of the Universal Soil Loss Equation (USLE) accounts for soil conservation measures and leads to a significant reduction in the modelled soil loss. However, in the practical application, the P-factor is the most neglected factor overall due to high effort for determining or lack of input data. This study provides a new method for automatic derivation of the main cultivation direction from seed rows and tramlines on agricultural land parcels using the Fast Line Detector (FLD) of the Open Computer Vision (OpenCV) package and open remote sensing data from Google Earth™. Comparison of the cultivation direction with the mean aspect for each land parcel allows the determination of a site-specific P-factor for the soil conservation measure contouring. After calibration of the FLD parameters, the success rate in a first application in the low mountain range Fischbach catchment, Germany, was 77.7% for 278 agricultural land parcels. The main reasons for unsuccessful detection were problems with headland detection, existing soil erosion, and widely varying albedo within the plots as well as individual outliers. The use of a corrected mask and enhanced parameterization offers promising improvements for a higher success rate of the FLD.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Scholand, Dominik ; Schmalz, Britta
Art des Eintrags: Zweitveröffentlichung
Titel: Deriving the Main Cultivation Direction from Open Remote Sensing Data to Determine the Support Practice Measure Contouring
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Land
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 11
Kollation: 34 Seiten
DOI: 10.26083/tuprints-00021199
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21199
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

The P-factor for support practice of the Universal Soil Loss Equation (USLE) accounts for soil conservation measures and leads to a significant reduction in the modelled soil loss. However, in the practical application, the P-factor is the most neglected factor overall due to high effort for determining or lack of input data. This study provides a new method for automatic derivation of the main cultivation direction from seed rows and tramlines on agricultural land parcels using the Fast Line Detector (FLD) of the Open Computer Vision (OpenCV) package and open remote sensing data from Google Earth™. Comparison of the cultivation direction with the mean aspect for each land parcel allows the determination of a site-specific P-factor for the soil conservation measure contouring. After calibration of the FLD parameters, the success rate in a first application in the low mountain range Fischbach catchment, Germany, was 77.7% for 278 agricultural land parcels. The main reasons for unsuccessful detection were problems with headland detection, existing soil erosion, and widely varying albedo within the plots as well as individual outliers. The use of a corrected mask and enhanced parameterization offers promising improvements for a higher success rate of the FLD.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-211994
Zusätzliche Informationen:

Keywords: soil erosion; USLE; P-factor; contouring; remote sensing; open data; image analysis; line segment detection

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 630 Landwirtschaft, Veterinärmedizin
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut Wasserbau und Wasserwirtschaft
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut Wasserbau und Wasserwirtschaft > Fachgebiet Ingenieurhydrologie und Wasserbewirtschaftung
Hinterlegungsdatum: 02 Mai 2022 11:05
Letzte Änderung: 03 Mai 2022 05:12
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen