Scholand, Dominik ; Schmalz, Britta (2022)
Deriving the Main Cultivation Direction from Open Remote Sensing Data to Determine the Support Practice Measure Contouring.
In: Land, 2022, 10 (11)
doi: 10.26083/tuprints-00021199
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
The P-factor for support practice of the Universal Soil Loss Equation (USLE) accounts for soil conservation measures and leads to a significant reduction in the modelled soil loss. However, in the practical application, the P-factor is the most neglected factor overall due to high effort for determining or lack of input data. This study provides a new method for automatic derivation of the main cultivation direction from seed rows and tramlines on agricultural land parcels using the Fast Line Detector (FLD) of the Open Computer Vision (OpenCV) package and open remote sensing data from Google Earth™. Comparison of the cultivation direction with the mean aspect for each land parcel allows the determination of a site-specific P-factor for the soil conservation measure contouring. After calibration of the FLD parameters, the success rate in a first application in the low mountain range Fischbach catchment, Germany, was 77.7% for 278 agricultural land parcels. The main reasons for unsuccessful detection were problems with headland detection, existing soil erosion, and widely varying albedo within the plots as well as individual outliers. The use of a corrected mask and enhanced parameterization offers promising improvements for a higher success rate of the FLD.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Scholand, Dominik ; Schmalz, Britta |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Deriving the Main Cultivation Direction from Open Remote Sensing Data to Determine the Support Practice Measure Contouring |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Land |
Jahrgang/Volume einer Zeitschrift: | 10 |
(Heft-)Nummer: | 11 |
Kollation: | 34 Seiten |
DOI: | 10.26083/tuprints-00021199 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21199 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung aus gefördertem Golden Open Access |
Kurzbeschreibung (Abstract): | The P-factor for support practice of the Universal Soil Loss Equation (USLE) accounts for soil conservation measures and leads to a significant reduction in the modelled soil loss. However, in the practical application, the P-factor is the most neglected factor overall due to high effort for determining or lack of input data. This study provides a new method for automatic derivation of the main cultivation direction from seed rows and tramlines on agricultural land parcels using the Fast Line Detector (FLD) of the Open Computer Vision (OpenCV) package and open remote sensing data from Google Earth™. Comparison of the cultivation direction with the mean aspect for each land parcel allows the determination of a site-specific P-factor for the soil conservation measure contouring. After calibration of the FLD parameters, the success rate in a first application in the low mountain range Fischbach catchment, Germany, was 77.7% for 278 agricultural land parcels. The main reasons for unsuccessful detection were problems with headland detection, existing soil erosion, and widely varying albedo within the plots as well as individual outliers. The use of a corrected mask and enhanced parameterization offers promising improvements for a higher success rate of the FLD. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-211994 |
Zusätzliche Informationen: | Keywords: soil erosion; USLE; P-factor; contouring; remote sensing; open data; image analysis; line segment detection |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau 600 Technik, Medizin, angewandte Wissenschaften > 630 Landwirtschaft, Veterinärmedizin |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut Wasserbau und Wasserwirtschaft 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut Wasserbau und Wasserwirtschaft > Fachgebiet Ingenieurhydrologie und Wasserbewirtschaftung |
Hinterlegungsdatum: | 02 Mai 2022 11:05 |
Letzte Änderung: | 03 Mai 2022 05:12 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Deriving the Main Cultivation Direction from Open Remote Sensing Data to Determine the Support Practice Measure Contouring. (deposited 02 Mai 2022 11:05) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |