TU Darmstadt / ULB / TUbiblio

Surface states, surface potentials, and segregation at surfaces of tin-doped In₂O₃

Gassenbauer, Y. ; Schafranek, R. ; Klein, Andreas ; Zafeiratos, S. ; Hävecker, M. ; Knop-Gericke, A. ; Schlögl, R. (2022)
Surface states, surface potentials, and segregation at surfaces of tin-doped In₂O₃.
In: Physical Review B, 2006, 73 (24)
doi: 10.26083/tuprints-00021180
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Surfaces of In₂O₃ and tin-doped In₂O₃ (ITO) were investigated using photoelectron spectroscopy. Parts of the measurements were carried out directly after thin film preparation by magnetron sputtering without breaking vacuum. In addition samples were measured during exposure to oxidizing and reducing gases at pressures of up to 100Pa using synchrotron radiation from the BESSY II storage ring. Reproducible changes of binding energies with temperature and atmosphere are observed, which are attributed to changes of the surface Fermi level position. We present evidence that the Fermi edge emission observed at ITO surfaces is due to metallic surface states rather than to filled conduction band states. The observed variation of the Fermi level position at the ITO surface with experimental conditions is accompanied by a large apparent variation of the core level to valence band maximum binding energy difference as a result of core-hole screening by the free carriers in the surface states. In addition segregation of Sn to the surface is driven by the surface potential gradient. At elevated temperatures the surface Sn concentration reproducibly changes with exposure to different environments and shows a correlation with the Fermi level position.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Gassenbauer, Y. ; Schafranek, R. ; Klein, Andreas ; Zafeiratos, S. ; Hävecker, M. ; Knop-Gericke, A. ; Schlögl, R.
Art des Eintrags: Zweitveröffentlichung
Titel: Surface states, surface potentials, and segregation at surfaces of tin-doped In₂O₃
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2006
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review B
Jahrgang/Volume einer Zeitschrift: 73
(Heft-)Nummer: 24
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00021180
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21180
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Surfaces of In₂O₃ and tin-doped In₂O₃ (ITO) were investigated using photoelectron spectroscopy. Parts of the measurements were carried out directly after thin film preparation by magnetron sputtering without breaking vacuum. In addition samples were measured during exposure to oxidizing and reducing gases at pressures of up to 100Pa using synchrotron radiation from the BESSY II storage ring. Reproducible changes of binding energies with temperature and atmosphere are observed, which are attributed to changes of the surface Fermi level position. We present evidence that the Fermi edge emission observed at ITO surfaces is due to metallic surface states rather than to filled conduction band states. The observed variation of the Fermi level position at the ITO surface with experimental conditions is accompanied by a large apparent variation of the core level to valence band maximum binding energy difference as a result of core-hole screening by the free carriers in the surface states. In addition segregation of Sn to the surface is driven by the surface potential gradient. At elevated temperatures the surface Sn concentration reproducibly changes with exposure to different environments and shows a correlation with the Fermi level position.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-211803
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften > Teilprojekt D3: Funktion und Ermüdung oxidischer Elektroden in organischen Leuchtdioden
Hinterlegungsdatum: 22 Apr 2022 11:06
Letzte Änderung: 25 Apr 2022 06:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen