TU Darmstadt / ULB / TUbiblio

Learning a Partitioning Advisor for Cloud Databases

Hilprecht, Benjamin ; Binnig, Carsten ; Röhm, Uwe (2020)
Learning a Partitioning Advisor for Cloud Databases.
2020 ACM SIGMOD International Conference on Management of Data. virtual Conference (14.06.2020-19.06.2020)
doi: 10.1145/3318464.3389704
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Cloud vendors provide ready-to-use distributed DBMS solutions as a service. While the provisioning of a DBMS is usually fully automated, customers typically still have to make important design decisions which were traditionally made by the database administrator such as finding an optimal partitioning scheme for a given database schema and workload. In this paper, we introduce a new learned partitioning advisor based on Deep Reinforcement Learning (DRL) for OLAP-style workloads. The main idea is that a DRL agent learns the cost tradeoffs of different partitioning schemes and can thus automate the partitioning decision. In the evaluation, we show that our advisor is able to find non-trivial partitionings for a wide range of workloads and outperforms more classical approaches for automated partitioning design.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Hilprecht, Benjamin ; Binnig, Carsten ; Röhm, Uwe
Art des Eintrags: Bibliographie
Titel: Learning a Partitioning Advisor for Cloud Databases
Sprache: Englisch
Publikationsjahr: 14 Juni 2020
Verlag: ACM
Buchtitel: SIGMOD '20: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data
Veranstaltungstitel: 2020 ACM SIGMOD International Conference on Management of Data
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 14.06.2020-19.06.2020
DOI: 10.1145/3318464.3389704
Kurzbeschreibung (Abstract):

Cloud vendors provide ready-to-use distributed DBMS solutions as a service. While the provisioning of a DBMS is usually fully automated, customers typically still have to make important design decisions which were traditionally made by the database administrator such as finding an optimal partitioning scheme for a given database schema and workload. In this paper, we introduce a new learned partitioning advisor based on Deep Reinforcement Learning (DRL) for OLAP-style workloads. The main idea is that a DRL agent learns the cost tradeoffs of different partitioning schemes and can thus automate the partitioning decision. In the evaluation, we show that our advisor is able to find non-trivial partitionings for a wide range of workloads and outperforms more classical approaches for automated partitioning design.

Freie Schlagworte: machine learning, database management systems, database tuning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data Management (2022 umbenannt in Data and AI Systems)
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C2: Informationszentrische Sicht
Hinterlegungsdatum: 21 Apr 2022 09:18
Letzte Änderung: 21 Apr 2022 09:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen