Hilprecht, Benjamin ; Binnig, Carsten (2022)
One Model to Rule them All: Towards Zero-Shot Learning for Databases.
12th Annual Conference on Innovative Data Systems Research (CIDR'22). Chaminade, USA (09.01.2022-12.01.2022)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
In this paper, we present our vision of so called zero-shot learn- ing for databases which is a new learning approach for database components. Zero-shot learning for databases is inspired by recent advances in transfer learning of models such as GPT-3 and can support a new database out-of-the box without the need to train a new model. Furthermore, it can easily be extended to few-shot learning by further retraining the model on the unseen database. As a first concrete contribution in this paper, we show the feasi- bility of zero-shot learning for the task of physical cost estimation and present very promising initial results. Moreover, as a second contribution we discuss the core challenges related to zero-shot learning for databases and present a roadmap to extend zero-shot learning towards many other tasks beyond cost estimation or even beyond classical database systems and workloads.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2022 |
Autor(en): | Hilprecht, Benjamin ; Binnig, Carsten |
Art des Eintrags: | Bibliographie |
Titel: | One Model to Rule them All: Towards Zero-Shot Learning for Databases |
Sprache: | Englisch |
Publikationsjahr: | 14 Dezember 2022 |
Veranstaltungstitel: | 12th Annual Conference on Innovative Data Systems Research (CIDR'22) |
Veranstaltungsort: | Chaminade, USA |
Veranstaltungsdatum: | 09.01.2022-12.01.2022 |
Kurzbeschreibung (Abstract): | In this paper, we present our vision of so called zero-shot learn- ing for databases which is a new learning approach for database components. Zero-shot learning for databases is inspired by recent advances in transfer learning of models such as GPT-3 and can support a new database out-of-the box without the need to train a new model. Furthermore, it can easily be extended to few-shot learning by further retraining the model on the unseen database. As a first concrete contribution in this paper, we show the feasi- bility of zero-shot learning for the task of physical cost estimation and present very promising initial results. Moreover, as a second contribution we discuss the core challenges related to zero-shot learning for databases and present a roadmap to extend zero-shot learning towards many other tasks beyond cost estimation or even beyond classical database systems and workloads. |
Zusätzliche Informationen: | More Information at http://www.cidrdb.org/cidr2022/index.html |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Data Management (2022 umbenannt in Data and AI Systems) DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C2: Informationszentrische Sicht |
Hinterlegungsdatum: | 21 Apr 2022 07:57 |
Letzte Änderung: | 21 Apr 2022 07:57 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |