TU Darmstadt / ULB / TUbiblio

One Model to Rule them All: Towards Zero-Shot Learning for Databases

Hilprecht, Benjamin ; Binnig, Carsten (2022)
One Model to Rule them All: Towards Zero-Shot Learning for Databases.
12th Annual Conference on Innovative Data Systems Research (CIDR'22). Chaminade, USA (09.01.2022-12.01.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we present our vision of so called zero-shot learn- ing for databases which is a new learning approach for database components. Zero-shot learning for databases is inspired by recent advances in transfer learning of models such as GPT-3 and can support a new database out-of-the box without the need to train a new model. Furthermore, it can easily be extended to few-shot learning by further retraining the model on the unseen database. As a first concrete contribution in this paper, we show the feasi- bility of zero-shot learning for the task of physical cost estimation and present very promising initial results. Moreover, as a second contribution we discuss the core challenges related to zero-shot learning for databases and present a roadmap to extend zero-shot learning towards many other tasks beyond cost estimation or even beyond classical database systems and workloads.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Hilprecht, Benjamin ; Binnig, Carsten
Art des Eintrags: Bibliographie
Titel: One Model to Rule them All: Towards Zero-Shot Learning for Databases
Sprache: Englisch
Publikationsjahr: 14 Dezember 2022
Veranstaltungstitel: 12th Annual Conference on Innovative Data Systems Research (CIDR'22)
Veranstaltungsort: Chaminade, USA
Veranstaltungsdatum: 09.01.2022-12.01.2022
Kurzbeschreibung (Abstract):

In this paper, we present our vision of so called zero-shot learn- ing for databases which is a new learning approach for database components. Zero-shot learning for databases is inspired by recent advances in transfer learning of models such as GPT-3 and can support a new database out-of-the box without the need to train a new model. Furthermore, it can easily be extended to few-shot learning by further retraining the model on the unseen database. As a first concrete contribution in this paper, we show the feasi- bility of zero-shot learning for the task of physical cost estimation and present very promising initial results. Moreover, as a second contribution we discuss the core challenges related to zero-shot learning for databases and present a roadmap to extend zero-shot learning towards many other tasks beyond cost estimation or even beyond classical database systems and workloads.

Zusätzliche Informationen:

More Information at http://www.cidrdb.org/cidr2022/index.html

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data Management (2022 umbenannt in Data and AI Systems)
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C2: Informationszentrische Sicht
Hinterlegungsdatum: 21 Apr 2022 07:57
Letzte Änderung: 21 Apr 2022 07:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen