Ren, Yaxiong ; Adams, Christian ; Melz, Tobias (2022)
Uncertainty Analysis and Experimental Validation of Identifying the Governing Equation of an Oscillator Using Sparse Regression.
In: Applied Sciences, 2022, 12 (2)
doi: 10.26083/tuprints-00020522
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
In recent years, the rapid growth of computing technology has enabled identifying mathematical models for vibration systems using measurement data instead of domain knowledge. Within this category, the method Sparse Identification of Nonlinear Dynamical Systems (SINDy) shows potential for interpretable identification. Therefore, in this work, a procedure of system identification based on the SINDy framework is developed and validated on a single-mass oscillator. To estimate the parameters in the SINDy model, two sparse regression methods are discussed. Compared with the Least Squares method with Sequential Threshold (LSST), which is the original estimation method from SINDy, the Least Squares method Post-LASSO (LSPL) shows better performance in numerical Monte Carlo Simulations (MCSs) of a single-mass oscillator in terms of sparseness, convergence, identified eigenfrequency, and coefficient of determination. Furthermore, the developed method SINDy-LSPL was successfully implemented with real measurement data of a single-mass oscillator with known theoretical parameters. The identified parameters using a sweep signal as excitation are more consistent and accurate than those identified using impulse excitation. In both cases, there exists a dependency of the identified parameter on the excitation amplitude that should be investigated in further research.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Ren, Yaxiong ; Adams, Christian ; Melz, Tobias |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Uncertainty Analysis and Experimental Validation of Identifying the Governing Equation of an Oscillator Using Sparse Regression |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Applied Sciences |
Jahrgang/Volume einer Zeitschrift: | 12 |
(Heft-)Nummer: | 2 |
Kollation: | 21 Seiten |
DOI: | 10.26083/tuprints-00020522 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/20522 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | In recent years, the rapid growth of computing technology has enabled identifying mathematical models for vibration systems using measurement data instead of domain knowledge. Within this category, the method Sparse Identification of Nonlinear Dynamical Systems (SINDy) shows potential for interpretable identification. Therefore, in this work, a procedure of system identification based on the SINDy framework is developed and validated on a single-mass oscillator. To estimate the parameters in the SINDy model, two sparse regression methods are discussed. Compared with the Least Squares method with Sequential Threshold (LSST), which is the original estimation method from SINDy, the Least Squares method Post-LASSO (LSPL) shows better performance in numerical Monte Carlo Simulations (MCSs) of a single-mass oscillator in terms of sparseness, convergence, identified eigenfrequency, and coefficient of determination. Furthermore, the developed method SINDy-LSPL was successfully implemented with real measurement data of a single-mass oscillator with known theoretical parameters. The identified parameters using a sweep signal as excitation are more consistent and accurate than those identified using impulse excitation. In both cases, there exists a dependency of the identified parameter on the excitation amplitude that should be investigated in further research. |
Freie Schlagworte: | SINDy-LSPL, sparse regression, system identification, vibration, uncertainty analysis |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-205226 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik (SAM) |
Hinterlegungsdatum: | 13 Apr 2022 11:11 |
Letzte Änderung: | 14 Apr 2022 05:13 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Uncertainty Analysis and Experimental Validation of Identifying the Governing Equation of an Oscillator Using Sparse Regression. (deposited 13 Apr 2022 11:11) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |