TU Darmstadt / ULB / TUbiblio

A Survey of 6D Object Detection Based on 3D Models for Industrial Applications

Gorschlüter, Felix ; Rojtberg, Pavel ; Pöllabauer, Thomas (2022)
A Survey of 6D Object Detection Based on 3D Models for Industrial Applications.
In: Journal of Imaging, 2022, 8 (3)
doi: 10.26083/tuprints-00021027
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Six-dimensional object detection of rigid objects is a problem especially relevant for quality control and robotic manipulation in industrial contexts. This work is a survey of the state of the art of 6D object detection with these use cases in mind, specifically focusing on algorithms trained only with 3D models or renderings thereof. Our first contribution is a listing of requirements typically encountered in industrial applications. The second contribution is a collection of quantitative evaluation results for several different 6D object detection methods trained with synthetic data and the comparison and analysis thereof. We identify the top methods for individual requirements that industrial applications have for object detectors, but find that a lack of comparable data prevents large-scale comparison over multiple aspects.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Gorschlüter, Felix ; Rojtberg, Pavel ; Pöllabauer, Thomas
Art des Eintrags: Zweitveröffentlichung
Titel: A Survey of 6D Object Detection Based on 3D Models for Industrial Applications
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Imaging
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 3
Kollation: 18 Seiten
DOI: 10.26083/tuprints-00021027
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21027
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Six-dimensional object detection of rigid objects is a problem especially relevant for quality control and robotic manipulation in industrial contexts. This work is a survey of the state of the art of 6D object detection with these use cases in mind, specifically focusing on algorithms trained only with 3D models or renderings thereof. Our first contribution is a listing of requirements typically encountered in industrial applications. The second contribution is a collection of quantitative evaluation results for several different 6D object detection methods trained with synthetic data and the comparison and analysis thereof. We identify the top methods for individual requirements that industrial applications have for object detectors, but find that a lack of comparable data prevents large-scale comparison over multiple aspects.

Freie Schlagworte: object detection, pose estimation, machine learning, neural networks, synthetic training, RGBD
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-210272
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Fraunhofer IGD
Hinterlegungsdatum: 11 Apr 2022 11:29
Letzte Änderung: 12 Apr 2022 09:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen