Harbig, Jana ; Wenzler, David L. ; Baehr, Siegfried ; Kick, Michael K. ; Merschroth, Holger ; Wimmer, Andreas ; Weigold, Matthias ; Zaeh, Michael F. (2022)
Methodology to Determine Melt Pool Anomalies in Powder Bed Fusion of Metals Using a Laser Beam by Means of Process Monitoring and Sensor Data Fusion.
In: Materials, 2022, 15 (3)
doi: 10.26083/tuprints-00021022
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Additive manufacturing, in particular the powder bed fusion of metals using a laser beam, has a wide range of possible technical applications. Especially for safety-critical applications, a quality assurance of the components is indispensable. However, time-consuming and costly quality assurance measures, such as computer tomography, represent a barrier for further industrial spreading. For this reason, alternative methods for process anomaly detection using process monitoring systems have been developed. However, the defect detection quality of current methods is limited, as single monitoring systems only detect specific process anomalies. Therefore, a new methodology to evaluate the data of multiple monitoring systems is derived using sensor data fusion. Focus was placed on the causes and the appearance of defects in different monitoring systems (photodiodes, on- and off-axis high-speed cameras, and thermography). Based on this, indicators representing characteristics of the process were developed to reduce the data. Finally, deterministic models for the data fusion within a monitoring system and between the monitoring systems were developed. The result was a defect detection of up to 92% of the melt track defects. The methodology was thus able to determine process anomalies and to evaluate the suitability of a specific process monitoring system for the defect detection.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Harbig, Jana ; Wenzler, David L. ; Baehr, Siegfried ; Kick, Michael K. ; Merschroth, Holger ; Wimmer, Andreas ; Weigold, Matthias ; Zaeh, Michael F. |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Methodology to Determine Melt Pool Anomalies in Powder Bed Fusion of Metals Using a Laser Beam by Means of Process Monitoring and Sensor Data Fusion |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Materials |
Jahrgang/Volume einer Zeitschrift: | 15 |
(Heft-)Nummer: | 3 |
Kollation: | 13 Seiten |
DOI: | 10.26083/tuprints-00021022 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21022 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Additive manufacturing, in particular the powder bed fusion of metals using a laser beam, has a wide range of possible technical applications. Especially for safety-critical applications, a quality assurance of the components is indispensable. However, time-consuming and costly quality assurance measures, such as computer tomography, represent a barrier for further industrial spreading. For this reason, alternative methods for process anomaly detection using process monitoring systems have been developed. However, the defect detection quality of current methods is limited, as single monitoring systems only detect specific process anomalies. Therefore, a new methodology to evaluate the data of multiple monitoring systems is derived using sensor data fusion. Focus was placed on the causes and the appearance of defects in different monitoring systems (photodiodes, on- and off-axis high-speed cameras, and thermography). Based on this, indicators representing characteristics of the process were developed to reduce the data. Finally, deterministic models for the data fusion within a monitoring system and between the monitoring systems were developed. The result was a defect detection of up to 92% of the melt track defects. The methodology was thus able to determine process anomalies and to evaluate the suitability of a specific process monitoring system for the defect detection. |
Freie Schlagworte: | additive manufacturing, multi-monitoring, PBF-LB/M, spatter |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-210225 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) |
Hinterlegungsdatum: | 11 Apr 2022 11:21 |
Letzte Änderung: | 12 Apr 2022 05:21 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Methodology to Determine Melt Pool Anomalies in Powder Bed Fusion of Metals Using a Laser Beam by Means of Process Monitoring and Sensor Data Fusion. (deposited 11 Apr 2022 11:21) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |