Shoukry, Nadeen ; Abd El Ghany, Mohamed A. ; Salem, Mohammed A.-M. (2022)
Multi-Modal Long-Term Person Re-Identification Using Physical Soft Bio-Metrics and Body Figure.
In: Applied Sciences, 2022, 12 (6)
doi: 10.26083/tuprints-00021107
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Person re-identification is the task of recognizing a subject across different non-overlapping cameras across different views and times. Most state-of-the-art datasets and proposed solutions tend to address the problem of short-term re-identification. Those models can re-identify a person as long as they are wearing the same clothes. The work presented in this paper addresses the task of long-term re-identification. Therefore, the proposed model is trained on a dataset that incorporates clothes variation. This paper proposes a multi-modal person re-identification model. The first modality includes soft bio-metrics: hair, face, neck, shoulders, and part of the chest. The second modality is the remaining body figure that mainly focuses on clothes. The proposed model is composed of two separate neural networks, one for each modality. For the first modality, a two-stream Siamese network with pre-trained FaceNet as a feature extractor for the first modality is utilized. Part-based Convolutional Baseline classifier with a feature extractor network OSNet for the second modality. Experiments confirm that the proposed model can outperform several state-of-the-art models achieving 81.4 % accuracy on Rank-1, 82.3% accuracy on Rank-5, 83.1% accuracy on Rank-10, and 83.7% accuracy on Rank-20.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Shoukry, Nadeen ; Abd El Ghany, Mohamed A. ; Salem, Mohammed A.-M. |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Multi-Modal Long-Term Person Re-Identification Using Physical Soft Bio-Metrics and Body Figure |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Applied Sciences |
Jahrgang/Volume einer Zeitschrift: | 12 |
(Heft-)Nummer: | 6 |
Kollation: | 18 Seiten |
DOI: | 10.26083/tuprints-00021107 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21107 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Person re-identification is the task of recognizing a subject across different non-overlapping cameras across different views and times. Most state-of-the-art datasets and proposed solutions tend to address the problem of short-term re-identification. Those models can re-identify a person as long as they are wearing the same clothes. The work presented in this paper addresses the task of long-term re-identification. Therefore, the proposed model is trained on a dataset that incorporates clothes variation. This paper proposes a multi-modal person re-identification model. The first modality includes soft bio-metrics: hair, face, neck, shoulders, and part of the chest. The second modality is the remaining body figure that mainly focuses on clothes. The proposed model is composed of two separate neural networks, one for each modality. For the first modality, a two-stream Siamese network with pre-trained FaceNet as a feature extractor for the first modality is utilized. Part-based Convolutional Baseline classifier with a feature extractor network OSNet for the second modality. Experiments confirm that the proposed model can outperform several state-of-the-art models achieving 81.4 % accuracy on Rank-1, 82.3% accuracy on Rank-5, 83.1% accuracy on Rank-10, and 83.7% accuracy on Rank-20. |
Freie Schlagworte: | FaceNet, long-term person re-identification, OSNet, PCB, PRCC dataset, Siamese network |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-211075 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Integrierte Elektronische Systeme (IES) |
Hinterlegungsdatum: | 08 Apr 2022 11:21 |
Letzte Änderung: | 12 Apr 2022 09:44 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Multi-Modal Long-Term Person Re-Identification Using Physical Soft Bio-Metrics and Body Figure. (deposited 08 Apr 2022 11:21) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |