TU Darmstadt / ULB / TUbiblio

A setup for micro-structured silicon targets by femtosecond laser irradiation

Neumann, Nico W. ; Ebert, Tina ; Schaumann, Gabriel ; Roth, Markus (2018)
A setup for micro-structured silicon targets by femtosecond laser irradiation.
In: Journal of Physics: Conference Series, 1079 (1)
doi: 10.1088/1742-6596/1079/1/012011
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We present a process to fabricate micro-structured thin silicon foils with highly light absorbing properties over a broad wavelength region based on short-pulse laser treatment. We employ this fascinating technique to the fabrication of targets for high-intensity laser-plasma experiments. A polished silicon wafer is processed with high-intensity femtosecond laser pulses resulting in conical spikes within the irradiated region. Height, distance, and shape of these spikes depend primarily on the number, energy, central wavelength and duration of the incident laser pulses, as well as the ambient medium. This method is of great value for the future development of target fabrication. The broad parameter base offers a huge selection regarding shape and dimensions of the resulting structure. It can be included in existing laser operations within the manufacturing chain while offering a high degree of customisability. Within the reach of higher repetition rates of high-power laser systems and an increased number of requested targets, this manufacturing method can be scaled while being cost efficient and easily adaptable.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Neumann, Nico W. ; Ebert, Tina ; Schaumann, Gabriel ; Roth, Markus
Art des Eintrags: Bibliographie
Titel: A setup for micro-structured silicon targets by femtosecond laser irradiation
Sprache: Englisch
Publikationsjahr: 2018
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics: Conference Series
Jahrgang/Volume einer Zeitschrift: 1079
(Heft-)Nummer: 1
DOI: 10.1088/1742-6596/1079/1/012011
Zugehörige Links:
Kurzbeschreibung (Abstract):

We present a process to fabricate micro-structured thin silicon foils with highly light absorbing properties over a broad wavelength region based on short-pulse laser treatment. We employ this fascinating technique to the fabrication of targets for high-intensity laser-plasma experiments. A polished silicon wafer is processed with high-intensity femtosecond laser pulses resulting in conical spikes within the irradiated region. Height, distance, and shape of these spikes depend primarily on the number, energy, central wavelength and duration of the incident laser pulses, as well as the ambient medium. This method is of great value for the future development of target fabrication. The broad parameter base offers a huge selection regarding shape and dimensions of the resulting structure. It can be included in existing laser operations within the manufacturing chain while offering a high degree of customisability. Within the reach of higher repetition rates of high-power laser systems and an increased number of requested targets, this manufacturing method can be scaled while being cost efficient and easily adaptable.

Zusätzliche Informationen:

6th Target Fabrication Workshop (TFW6) and the Targetry for High Repetition Rate Laser-Driven Sources (Targ3) Conference 8–11 May 2017, University of Greenwich, London (TFW) and 21–23 June 2017 Salamanca, Spain (Targ)

Fachbereich(e)/-gebiet(e): Studienbereiche
05 Fachbereich Physik
05 Fachbereich Physik > Institut für Kernphysik
05 Fachbereich Physik > Institut für Kernphysik > Experimentelle Kernphysik
05 Fachbereich Physik > Institut für Kernphysik > Experimentelle Kernphysik > Laser- und Plasmaphysik
Studienbereiche > Studienbereich Energy Science and Engineering
Hinterlegungsdatum: 30 Mär 2022 07:54
Letzte Änderung: 11 Jun 2024 06:09
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen