Driscoll-Spittler, Thomas Maximilian (2022)
Reflective modular forms and vertex operator algebras.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00020957
Dissertation, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
In this thesis we mainly study strongly rational, holomorphic vertex operator algebras and reflective modular forms. First we associate the Lie algebra of physical states to a vertex operator algebra of central charge c=24. We study the corresponding Lie bracket as a bilinear map between weight spaces of the vertex operator algebra. This makes use of no-ghost-isomorphisms. A careful analysis of the no-ghost theorem yields methods to evaluate those bilinear maps explicitly in terms of vertex algebra operations. Then we decompose such holomorphic vertex operator algebras according to their affine substructure and show that the corresponding characters are vector-valued modular forms for a coroot lattice, suitably enriched by simple currents. The associated automorphic product yields the product side of the denominator identity of the Lie algebra of physical states. Since this is a generalized Kac-Moody algebra it follows that this automorphic product is reflective. Finally we study lattices that admit a reflective modular form. We show, that there are just finitely many such lattices of even signature, which split rescaled hyperbolic planes. We determine explicit bounds for the levels.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2022 | ||||
Autor(en): | Driscoll-Spittler, Thomas Maximilian | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Reflective modular forms and vertex operator algebras | ||||
Sprache: | Englisch | ||||
Referenten: | Scheithauer, Prof. Dr. Nils ; Bruinier, Prof. Dr. Jan Hendrik | ||||
Publikationsjahr: | 2022 | ||||
Ort: | Darmstadt | ||||
Kollation: | 124 Seiten | ||||
Datum der mündlichen Prüfung: | 21 Dezember 2021 | ||||
DOI: | 10.26083/tuprints-00020957 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/20957 | ||||
Kurzbeschreibung (Abstract): | In this thesis we mainly study strongly rational, holomorphic vertex operator algebras and reflective modular forms. First we associate the Lie algebra of physical states to a vertex operator algebra of central charge c=24. We study the corresponding Lie bracket as a bilinear map between weight spaces of the vertex operator algebra. This makes use of no-ghost-isomorphisms. A careful analysis of the no-ghost theorem yields methods to evaluate those bilinear maps explicitly in terms of vertex algebra operations. Then we decompose such holomorphic vertex operator algebras according to their affine substructure and show that the corresponding characters are vector-valued modular forms for a coroot lattice, suitably enriched by simple currents. The associated automorphic product yields the product side of the denominator identity of the Lie algebra of physical states. Since this is a generalized Kac-Moody algebra it follows that this automorphic product is reflective. Finally we study lattices that admit a reflective modular form. We show, that there are just finitely many such lattices of even signature, which split rescaled hyperbolic planes. We determine explicit bounds for the levels. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Status: | Verlagsversion | ||||
URN: | urn:nbn:de:tuda-tuprints-209574 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Algebra 04 Fachbereich Mathematik > Algebra > Unendlichdimensionale Lie-Algebren, Vertexalgebren, Automorphe Formen |
||||
Hinterlegungsdatum: | 25 Mär 2022 11:23 | ||||
Letzte Änderung: | 29 Mär 2022 08:57 | ||||
PPN: | |||||
Referenten: | Scheithauer, Prof. Dr. Nils ; Bruinier, Prof. Dr. Jan Hendrik | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 21 Dezember 2021 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |