TU Darmstadt / ULB / TUbiblio

Bidding and Scheduling in Energy Markets: Which Probabilistic Forecast Do We Need?

Beykirch, Mario ; Janke, Tim ; Steinke, Florian (2022)
Bidding and Scheduling in Energy Markets: Which Probabilistic Forecast Do We Need?
17th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS 2022). virtual Conference (12.06.2022-15.06.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Probabilistic forecasting in combination with stochastic programming is a key tool for handling the growing uncertainties in future energy systems. Derived from a general stochastic programming formulation for the optimal scheduling and bidding in energy markets we examine several common special instances containing uncertain loads, energy prices, and variable renewable energies. We analyze for each setup whether only an expected value forecast, marginal or bivariate predictive distributions, or the full joint predictive distribution is required. For market schedule optimization, we find that expected price forecasts are sufficient in almost all cases, while the marginal distributions of renewable energy production and demand are often required. For bidding curve optimization, pairwise or full joint distributions are necessary except for specific cases. This work helps practitioners choose the simplest type of forecast that can still achieve the best theoretically possible result for their problem and researchers to focus on the most relevant instances.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Beykirch, Mario ; Janke, Tim ; Steinke, Florian
Art des Eintrags: Bibliographie
Titel: Bidding and Scheduling in Energy Markets: Which Probabilistic Forecast Do We Need?
Sprache: Englisch
Publikationsjahr: 25 März 2022
Veranstaltungstitel: 17th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS 2022)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 12.06.2022-15.06.2022
URL / URN: https://arxiv.org/abs/2203.13159
Zugehörige Links:
Kurzbeschreibung (Abstract):

Probabilistic forecasting in combination with stochastic programming is a key tool for handling the growing uncertainties in future energy systems. Derived from a general stochastic programming formulation for the optimal scheduling and bidding in energy markets we examine several common special instances containing uncertain loads, energy prices, and variable renewable energies. We analyze for each setup whether only an expected value forecast, marginal or bivariate predictive distributions, or the full joint predictive distribution is required. For market schedule optimization, we find that expected price forecasts are sufficient in almost all cases, while the marginal distributions of renewable energy production and demand are often required. For bidding curve optimization, pairwise or full joint distributions are necessary except for specific cases. This work helps practitioners choose the simplest type of forecast that can still achieve the best theoretically possible result for their problem and researchers to focus on the most relevant instances.

Freie Schlagworte: EnEff Campus LW
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Energieinformationsnetze und Systeme (EINS)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
Forschungsfelder
Forschungsfelder > Energy and Environment
Forschungsfelder > Energy and Environment > Integrated Energy Systems
Hinterlegungsdatum: 19 Mai 2022 09:50
Letzte Änderung: 15 Nov 2022 10:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen