TU Darmstadt / ULB / TUbiblio

On coupled-channel dynamics in the presence of anomalous thresholds

Lutz, Matthias F. M. ; Korpa, Csaba L. (2022)
On coupled-channel dynamics in the presence of anomalous thresholds.
In: Physical Review D, 2018, 98 (7)
doi: 10.26083/tuprints-00012794
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We explore a general framework to treat coupled-channel systems in the presence of overlapping left- and right-hand cuts as well as anomalous thresholds. Such systems are studied in terms of a generalized potential, where we exploit the known analytic structure of t- and u-channel forces as the exchange masses approach their physical values. Given an approximate generalized potential the coupled-channel reaction amplitudes are defined in terms of nonlinear systems of integral equations. For large exchange masses, where there are no anomalous thresholds present, conventional N=D methods are applicable to derive numerical solutions to the latter. At a formal level a generalization to the anomalous case is readily formulated by use of suitable contour integrations with amplitudes to be evaluated at complex energies. However, it is a considerable challenge to find numerical solutions to anomalous systems set up on a set of complex contours. By suitable deformations of left-hand and right-hand cut lines we manage to establish a framework of linear integral equations defined for real energies. Explicit expressions are derived for the driving terms that hold for an arbitrary number of channels. Our approach is illustrated in terms of schematic three-channel systems. It is demonstrated that despite the presence of anomalous thresholds the scattering amplitude can be represented in terms of three phase shifts and three inelasticity parameters, as one would expect from the coupled-channel unitarity condition.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Lutz, Matthias F. M. ; Korpa, Csaba L.
Art des Eintrags: Zweitveröffentlichung
Titel: On coupled-channel dynamics in the presence of anomalous thresholds
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2018
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review D
Jahrgang/Volume einer Zeitschrift: 98
(Heft-)Nummer: 7
Kollation: 26 Seiten
DOI: 10.26083/tuprints-00012794
URL / URN: https://tuprints.ulb.tu-darmstadt.de/12794
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

We explore a general framework to treat coupled-channel systems in the presence of overlapping left- and right-hand cuts as well as anomalous thresholds. Such systems are studied in terms of a generalized potential, where we exploit the known analytic structure of t- and u-channel forces as the exchange masses approach their physical values. Given an approximate generalized potential the coupled-channel reaction amplitudes are defined in terms of nonlinear systems of integral equations. For large exchange masses, where there are no anomalous thresholds present, conventional N=D methods are applicable to derive numerical solutions to the latter. At a formal level a generalization to the anomalous case is readily formulated by use of suitable contour integrations with amplitudes to be evaluated at complex energies. However, it is a considerable challenge to find numerical solutions to anomalous systems set up on a set of complex contours. By suitable deformations of left-hand and right-hand cut lines we manage to establish a framework of linear integral equations defined for real energies. Explicit expressions are derived for the driving terms that hold for an arbitrary number of channels. Our approach is illustrated in terms of schematic three-channel systems. It is demonstrated that despite the presence of anomalous thresholds the scattering amplitude can be represented in terms of three phase shifts and three inelasticity parameters, as one would expect from the coupled-channel unitarity condition.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-127946
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Kernphysik
Hinterlegungsdatum: 11 Mär 2022 13:19
Letzte Änderung: 14 Mär 2022 08:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen