Tolle, Tobias ; Gründing, Dirk ; Bothe, Dieter ; Marić, Tomislav (2022)
triSurfaceImmersion: Computing volume fractions and signed distances from triangulated surfaces immersed in unstructured meshes.
In: Computer Physics Communications, 273
doi: 10.1016/j.cpc.2021.108249
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
We propose a numerical method that enables the calculation of volume fractions from triangulated surfaces immersed in unstructured meshes. First, the signed distances are calculated geometrically near the triangulated surface. For this purpose, the computational complexity has been reduced by using an octree space subdivision. Second, an approximate solution of the Laplace equation is used to propagate the inside/outside information from the surface into the solution domain. Finally, volume fractions are computed from the signed distances in the vicinity of the surface. The volume fraction calculation utilizes either geometrical intersections or a polynomial approximation based on signed distances. An adaptive tetrahedral decomposition of polyhedral cells ensures a high absolute accuracy. The proposed method extends the admissible shape of the fluid interface (surface) to triangulated surfaces that can be open or closed, disjoint, and model objects of technical geometrical complexity.
Current results demonstrate the effectiveness of the proposed algorithm for two-phase flow simulations of wetting phenomena, but the algorithm has broad applicability. For example, the calculation of volume fractions is crucial for achieving numerically stable simulations of surface tension-driven two-phase flows with the unstructured Volume-of-Fluid method. The method is applicable as a discrete phase-indicator model for the unstructured hybrid Level Set/Front Tracking method.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Tolle, Tobias ; Gründing, Dirk ; Bothe, Dieter ; Marić, Tomislav |
Art des Eintrags: | Bibliographie |
Titel: | triSurfaceImmersion: Computing volume fractions and signed distances from triangulated surfaces immersed in unstructured meshes |
Sprache: | Englisch |
Publikationsjahr: | April 2022 |
Ort: | Amsterdam |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Computer Physics Communications |
Jahrgang/Volume einer Zeitschrift: | 273 |
DOI: | 10.1016/j.cpc.2021.108249 |
Kurzbeschreibung (Abstract): | We propose a numerical method that enables the calculation of volume fractions from triangulated surfaces immersed in unstructured meshes. First, the signed distances are calculated geometrically near the triangulated surface. For this purpose, the computational complexity has been reduced by using an octree space subdivision. Second, an approximate solution of the Laplace equation is used to propagate the inside/outside information from the surface into the solution domain. Finally, volume fractions are computed from the signed distances in the vicinity of the surface. The volume fraction calculation utilizes either geometrical intersections or a polynomial approximation based on signed distances. An adaptive tetrahedral decomposition of polyhedral cells ensures a high absolute accuracy. The proposed method extends the admissible shape of the fluid interface (surface) to triangulated surfaces that can be open or closed, disjoint, and model objects of technical geometrical complexity. Current results demonstrate the effectiveness of the proposed algorithm for two-phase flow simulations of wetting phenomena, but the algorithm has broad applicability. For example, the calculation of volume fractions is crucial for achieving numerically stable simulations of surface tension-driven two-phase flows with the unstructured Volume-of-Fluid method. The method is applicable as a discrete phase-indicator model for the unstructured hybrid Level Set/Front Tracking method. |
Freie Schlagworte: | SFB1194_Z-INF |
Zusätzliche Informationen: | Art.No.: 108249 |
Fachbereich(e)/-gebiet(e): | DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B01: Modellierung und VOF-basierte Simulation der Multiphysik irreversibler thermodynamischer Transferprozesse an dynamischen Kontaktlinien DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B02: Direkte Numerische Simulation lokal gekoppelter Grenzflächentransportprozesse an Kontaktlinien bei dynamischen Benetzungsprozessen |
TU-Projekte: | DFG|SFB1194|TP B01 Bothe DFG|SFB1194|TP B02 Marshall |
Hinterlegungsdatum: | 07 Mär 2022 11:54 |
Letzte Änderung: | 11 Dez 2023 15:11 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |