Treiber, Amos ; Molina, Alejandro ; Weinert, Christian ; Schneider, Thomas ; Kersting, Kristian (2020)
CryptoSPN: Privacy-preserving machine learning beyond neural networks.
7th Theory and Practice of Multi-Party Computation Workshop (TPMPC'20). virtual Conference (25.05.2020-04.06.2020)
doi: 10.48550/arXiv.2002.00801
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
AI algorithms, and machine learning (ML) techniques in particular, are increasingly important to individuals' lives, but have caused a range of privacy concerns addressed by, e.g., the European GDPR. Using cryptographic techniques, it is possible to perform inference tasks remotely on sensitive client data in a privacy-preserving way: the server learns nothing about the input data and the model predictions, while the client learns nothing about the ML model (which is often considered intellectual property and might contain traces of sensitive data). While such privacy-preserving solutions are relatively efficient, they are mostly targeted at neural networks, can degrade the predictive accuracy, and usually reveal the network's topology. Furthermore, existing solutions are not readily accessible to ML experts, as prototype implementations are not well-integrated into ML frameworks and require extensive cryptographic knowledge. In this paper, we present CryptoSPN, a framework for privacy-preserving inference of sum-product networks (SPNs). SPNs are a tractable probabilistic graphical model that allows a range of exact inference queries in linear time. Specifically, we show how to efficiently perform SPN inference via secure multi-party computation (SMPC) without accuracy degradation while hiding sensitive client and training information with provable security guarantees. Next to foundations, CryptoSPN encompasses tools to easily transform existing SPNs into privacy-preserving executables. Our empirical results demonstrate that CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2020 |
Autor(en): | Treiber, Amos ; Molina, Alejandro ; Weinert, Christian ; Schneider, Thomas ; Kersting, Kristian |
Art des Eintrags: | Bibliographie |
Titel: | CryptoSPN: Privacy-preserving machine learning beyond neural networks |
Sprache: | Englisch |
Publikationsjahr: | 4 Juni 2020 |
Veranstaltungstitel: | 7th Theory and Practice of Multi-Party Computation Workshop (TPMPC'20) |
Veranstaltungsort: | virtual Conference |
Veranstaltungsdatum: | 25.05.2020-04.06.2020 |
DOI: | 10.48550/arXiv.2002.00801 |
Kurzbeschreibung (Abstract): | AI algorithms, and machine learning (ML) techniques in particular, are increasingly important to individuals' lives, but have caused a range of privacy concerns addressed by, e.g., the European GDPR. Using cryptographic techniques, it is possible to perform inference tasks remotely on sensitive client data in a privacy-preserving way: the server learns nothing about the input data and the model predictions, while the client learns nothing about the ML model (which is often considered intellectual property and might contain traces of sensitive data). While such privacy-preserving solutions are relatively efficient, they are mostly targeted at neural networks, can degrade the predictive accuracy, and usually reveal the network's topology. Furthermore, existing solutions are not readily accessible to ML experts, as prototype implementations are not well-integrated into ML frameworks and require extensive cryptographic knowledge. In this paper, we present CryptoSPN, a framework for privacy-preserving inference of sum-product networks (SPNs). SPNs are a tractable probabilistic graphical model that allows a range of exact inference queries in linear time. Specifically, we show how to efficiently perform SPN inference via secure multi-party computation (SMPC) without accuracy degradation while hiding sensitive client and training information with provable security guarantees. Next to foundations, CryptoSPN encompasses tools to easily transform existing SPNs into privacy-preserving executables. Our empirical results demonstrate that CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs. |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Praktische Kryptographie und Privatheit DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Graduiertenkollegs DFG-Graduiertenkollegs > Graduiertenkolleg 2050 Privacy and Trust for Mobile Users DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1119: CROSSING – Kryptographiebasierte Sicherheitslösungen als Grundlage für Vertrauen in heutigen und zukünftigen IT-Systemen |
Hinterlegungsdatum: | 02 Mär 2022 08:55 |
Letzte Änderung: | 06 Aug 2024 09:11 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |