TU Darmstadt / ULB / TUbiblio

Image-based Activity Recognition from IMU Data

Sanchez Guinea, Alejandro ; Sarabchian, Mehran ; Mühlhäuser, Max (2021)
Image-based Activity Recognition from IMU Data.
19th International Conference on Pervasive Computing and Communications. virtual Conference (22.03.2021-26.03.2021)
doi: 10.1109/PerComWorkshops51409.2021.9430990
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper we propose an approach to improve the performance of human activity recognition (HAR) from inertial sensors data, based on image processing techniques. Our approach creates image representations of the time-series data to take advantage of the strengths that convolutional neural networks (CNNs) have shown when dealing with image data. We have conducted an evaluation using benchmark datasets that are considered among the most relevant in HAR. Our results show that our approach is able to outperform the state of the art in all cases.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Sanchez Guinea, Alejandro ; Sarabchian, Mehran ; Mühlhäuser, Max
Art des Eintrags: Bibliographie
Titel: Image-based Activity Recognition from IMU Data
Sprache: Englisch
Publikationsjahr: 25 Mai 2021
Verlag: IEEE
Buchtitel: 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)
Reihe: 18th Conference on Pervasive Computing and Communications Workshops
Veranstaltungstitel: 19th International Conference on Pervasive Computing and Communications
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 22.03.2021-26.03.2021
DOI: 10.1109/PerComWorkshops51409.2021.9430990
Kurzbeschreibung (Abstract):

In this paper we propose an approach to improve the performance of human activity recognition (HAR) from inertial sensors data, based on image processing techniques. Our approach creates image representations of the time-series data to take advantage of the strengths that convolutional neural networks (CNNs) have shown when dealing with image data. We have conducted an evaluation using benchmark datasets that are considered among the most relevant in HAR. Our results show that our approach is able to outperform the state of the art in all cases.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
Hinterlegungsdatum: 17 Feb 2022 15:21
Letzte Änderung: 17 Feb 2022 15:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen