TU Darmstadt / ULB / TUbiblio

Boundary Conditions in a Lattice Boltzmann Method For Plane Strain Problems

Schlüter, Alexander ; Müller, Henning ; Müller, Ralf (2021)
Boundary Conditions in a Lattice Boltzmann Method For Plane Strain Problems.
In: PAMM — Proceedings in Applied Mathematics and Mechanics, 21 (1)
doi: 10.1002/pamm.202100085
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The Lattice Boltzmann Method (LBM), e.g. in 1 and 2, can be interpreted as an alternative method for the numerical solution of certain partial differential equations that is not restricted to its origin in computational fluid mechanics. The interpretation of the LBM as a general numerical tool allows to extend the LBM to solid mechanics as well, see e.g. 3, which is concerned with the simulation of elastic solids under simplified deformation assumptions, and 4 as well as 5 which propose LBMs for the general plane strain case. In previous works on a LBM for plain strain such as 5, the treatment of practically relevant boundary conditions like Neumann and Dirichlet type boundary conditions is not the main focus and thus periodic conditions or absorbing layers are specified to simulate numerical examples. In this work, we show how Neumann and Dirichlet type boundary conditions are implemented in our LBM for plane strain from 4.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Schlüter, Alexander ; Müller, Henning ; Müller, Ralf
Art des Eintrags: Bibliographie
Titel: Boundary Conditions in a Lattice Boltzmann Method For Plane Strain Problems
Sprache: Englisch
Publikationsjahr: 2021
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM — Proceedings in Applied Mathematics and Mechanics
Jahrgang/Volume einer Zeitschrift: 21
(Heft-)Nummer: 1
DOI: 10.1002/pamm.202100085
URL / URN: https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.2021000...
Kurzbeschreibung (Abstract):

The Lattice Boltzmann Method (LBM), e.g. in 1 and 2, can be interpreted as an alternative method for the numerical solution of certain partial differential equations that is not restricted to its origin in computational fluid mechanics. The interpretation of the LBM as a general numerical tool allows to extend the LBM to solid mechanics as well, see e.g. 3, which is concerned with the simulation of elastic solids under simplified deformation assumptions, and 4 as well as 5 which propose LBMs for the general plane strain case. In previous works on a LBM for plain strain such as 5, the treatment of practically relevant boundary conditions like Neumann and Dirichlet type boundary conditions is not the main focus and thus periodic conditions or absorbing layers are specified to simulate numerical examples. In this work, we show how Neumann and Dirichlet type boundary conditions are implemented in our LBM for plane strain from 4.

Zusätzliche Informationen:

Artikel-ID: e202100085

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 03 Mai 2022 06:12
Letzte Änderung: 03 Mai 2022 06:12
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen