Schlüter, Alexander ; Müller, Henning ; Müller, Ralf (2021)
Boundary Conditions in a Lattice Boltzmann Method For Plane Strain Problems.
In: PAMM — Proceedings in Applied Mathematics and Mechanics, 21 (1)
doi: 10.1002/pamm.202100085
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The Lattice Boltzmann Method (LBM), e.g. in 1 and 2, can be interpreted as an alternative method for the numerical solution of certain partial differential equations that is not restricted to its origin in computational fluid mechanics. The interpretation of the LBM as a general numerical tool allows to extend the LBM to solid mechanics as well, see e.g. 3, which is concerned with the simulation of elastic solids under simplified deformation assumptions, and 4 as well as 5 which propose LBMs for the general plane strain case. In previous works on a LBM for plain strain such as 5, the treatment of practically relevant boundary conditions like Neumann and Dirichlet type boundary conditions is not the main focus and thus periodic conditions or absorbing layers are specified to simulate numerical examples. In this work, we show how Neumann and Dirichlet type boundary conditions are implemented in our LBM for plane strain from 4.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Schlüter, Alexander ; Müller, Henning ; Müller, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Boundary Conditions in a Lattice Boltzmann Method For Plane Strain Problems |
Sprache: | Englisch |
Publikationsjahr: | 2021 |
Verlag: | Wiley |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | PAMM — Proceedings in Applied Mathematics and Mechanics |
Jahrgang/Volume einer Zeitschrift: | 21 |
(Heft-)Nummer: | 1 |
DOI: | 10.1002/pamm.202100085 |
URL / URN: | https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.2021000... |
Kurzbeschreibung (Abstract): | The Lattice Boltzmann Method (LBM), e.g. in 1 and 2, can be interpreted as an alternative method for the numerical solution of certain partial differential equations that is not restricted to its origin in computational fluid mechanics. The interpretation of the LBM as a general numerical tool allows to extend the LBM to solid mechanics as well, see e.g. 3, which is concerned with the simulation of elastic solids under simplified deformation assumptions, and 4 as well as 5 which propose LBMs for the general plane strain case. In previous works on a LBM for plain strain such as 5, the treatment of practically relevant boundary conditions like Neumann and Dirichlet type boundary conditions is not the main focus and thus periodic conditions or absorbing layers are specified to simulate numerical examples. In this work, we show how Neumann and Dirichlet type boundary conditions are implemented in our LBM for plane strain from 4. |
Zusätzliche Informationen: | Artikel-ID: e202100085 |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 03 Mai 2022 06:12 |
Letzte Änderung: | 03 Mai 2022 06:12 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |