TU Darmstadt / ULB / TUbiblio

Adaptive Exponential Finite Elements for a Phase Field Fracture Model

Olesch, Darius ; Kuhn, Charlotte ; Schlüter, Alexander ; Müller, Ralf (2021)
Adaptive Exponential Finite Elements for a Phase Field Fracture Model.
In: PAMM — Proceedings in Applied Mathematics and Mechanics, 21 (1)
doi: 10.1002/pamm.202100077
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Fracture phenomena can be described by a phase field model in which an independent scalar field variable in addition to the mechanical displacement is considered 3. This field approximates crack surfaces as a continuous transition zone from a value that indicates intact material to another value that represents the crack. For an accurate approximation of cracks, narrow transition zones resulting in steep gradients of the fracture field are required. This necessitates a high mesh density in finite element simulations, which leads to an increased computational effort. In order to circumvent this problem without forfeiting accuracy, exponential shape functions were introduced in the discretization of the phase field variable, see 4. These special shape functions allow for a better approximation of steep gradients of the phase field with less elements as compared to standard Lagrange elements. Unfortunately, the orientation of the exponential shape functions is not uniquely determined and needs to be set up in the correct way in order to improve the approximation of smooth cracks. This work solves the issue by adaptively reorientating the exponential shape functions according to the nodal values of the phase field gradient in each element. Furthermore, a local approach is pursued that uses exponential shape function only in the vicinity of the crack, whereas standard bilinear shape function are used away from the crack.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Olesch, Darius ; Kuhn, Charlotte ; Schlüter, Alexander ; Müller, Ralf
Art des Eintrags: Bibliographie
Titel: Adaptive Exponential Finite Elements for a Phase Field Fracture Model
Sprache: Englisch
Publikationsjahr: 2021
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM — Proceedings in Applied Mathematics and Mechanics
Jahrgang/Volume einer Zeitschrift: 21
(Heft-)Nummer: 1
DOI: 10.1002/pamm.202100077
URL / URN: https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.2021000...
Kurzbeschreibung (Abstract):

Fracture phenomena can be described by a phase field model in which an independent scalar field variable in addition to the mechanical displacement is considered 3. This field approximates crack surfaces as a continuous transition zone from a value that indicates intact material to another value that represents the crack. For an accurate approximation of cracks, narrow transition zones resulting in steep gradients of the fracture field are required. This necessitates a high mesh density in finite element simulations, which leads to an increased computational effort. In order to circumvent this problem without forfeiting accuracy, exponential shape functions were introduced in the discretization of the phase field variable, see 4. These special shape functions allow for a better approximation of steep gradients of the phase field with less elements as compared to standard Lagrange elements. Unfortunately, the orientation of the exponential shape functions is not uniquely determined and needs to be set up in the correct way in order to improve the approximation of smooth cracks. This work solves the issue by adaptively reorientating the exponential shape functions according to the nodal values of the phase field gradient in each element. Furthermore, a local approach is pursued that uses exponential shape function only in the vicinity of the crack, whereas standard bilinear shape function are used away from the crack.

Zusätzliche Informationen:

Artikel-ID: e202100077

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 03 Mai 2022 06:14
Letzte Änderung: 03 Mai 2022 06:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen