TU Darmstadt / ULB / TUbiblio

Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and Open Challenges

Sala, Ramses ; Müller, Ralf (2020)
Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and Open Challenges.
doi: 10.1109/CEC48606.2020.9185724
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Research on new optimization algorithms is often funded based on the motivation that such algorithms might improve the capabilities to deal with real-world and industrially relevant optimization challenges. Besides a huge variety of different evolutionary and metaheuristic optimization algorithms, also a large number of test problems and benchmark suites have been developed and used for comparative assessments of algorithms, in the context of global, continuous, and black-box optimization. For many of the commonly used synthetic benchmark problems or artificial fitness landscapes, there are however, no methods available, to relate the resulting algorithm performance assessments to technologically relevant real-world optimization problems, or vice versa. Also, from a theoretical perspective, many of the commonly used benchmark problems and approaches have little to no generalization value. Based on a mini-review of publications with critical comments, advice, and new approaches, this communication aims to give a constructive perspective on several open challenges and prospective research directions related to systematic and generalizable benchmarking for black-box optimization.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Sala, Ramses ; Müller, Ralf
Art des Eintrags: Bibliographie
Titel: Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and Open Challenges
Sprache: Englisch
Publikationsjahr: Juli 2020
Ort: Glasgow, UK
Buchtitel: 2020 IEEE Congress on Evolutionary Computation (CEC)
DOI: 10.1109/CEC48606.2020.9185724
URL / URN: https://ieeexplore.ieee.org/document/9185724
Kurzbeschreibung (Abstract):

Research on new optimization algorithms is often funded based on the motivation that such algorithms might improve the capabilities to deal with real-world and industrially relevant optimization challenges. Besides a huge variety of different evolutionary and metaheuristic optimization algorithms, also a large number of test problems and benchmark suites have been developed and used for comparative assessments of algorithms, in the context of global, continuous, and black-box optimization. For many of the commonly used synthetic benchmark problems or artificial fitness landscapes, there are however, no methods available, to relate the resulting algorithm performance assessments to technologically relevant real-world optimization problems, or vice versa. Also, from a theoretical perspective, many of the commonly used benchmark problems and approaches have little to no generalization value. Based on a mini-review of publications with critical comments, advice, and new approaches, this communication aims to give a constructive perspective on several open challenges and prospective research directions related to systematic and generalizable benchmarking for black-box optimization.

Freie Schlagworte: Benchmark, Benchmark testing, Black-Box Optimization, Evolutionary Algorithms, Evolutionary computation, fitness landscape analysis, Metaheuristics, Optimization, Systematics
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 03 Mai 2022 06:29
Letzte Änderung: 03 Mai 2022 06:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen