Nadgir, O. ; Dornisch, W. ; Müller, R. ; Keip, M.-A. (2019)
A phase-field model for transversely isotropic ferroelectrics.
In: Archive of Applied Mechanics, 89 (6)
doi: 10.1007/s00419-019-01543-y
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
We propose an electro-mechanically coupled phase-field model for ferroelectric materials that show cubic–tetragonal phase transition. The cubic phase is idealized by an isotropic formulation, and the tetragonal phase is idealized by a transversely isotropic formulation. We consider a classical phase-field model with Ginzburg–Landau-type evolution of the order parameter. The order parameter drives the transition of all involved moduli tensors such as elastic, dielectric and piezoelectric moduli, which in turn maintain their typical features and stability as a result of a selected phase-transition function. The model is described in coordinate-invariant form and implemented into a finite element framework with implicit time integration of the evolution equation. Representative numerical examples in two and three dimensions demonstrate the main features of the constitutive model and the numerical stability of the formulation.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Nadgir, O. ; Dornisch, W. ; Müller, R. ; Keip, M.-A. |
Art des Eintrags: | Bibliographie |
Titel: | A phase-field model for transversely isotropic ferroelectrics |
Sprache: | Englisch |
Publikationsjahr: | 15 Juni 2019 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Archive of Applied Mechanics |
Jahrgang/Volume einer Zeitschrift: | 89 |
(Heft-)Nummer: | 6 |
DOI: | 10.1007/s00419-019-01543-y |
Kurzbeschreibung (Abstract): | We propose an electro-mechanically coupled phase-field model for ferroelectric materials that show cubic–tetragonal phase transition. The cubic phase is idealized by an isotropic formulation, and the tetragonal phase is idealized by a transversely isotropic formulation. We consider a classical phase-field model with Ginzburg–Landau-type evolution of the order parameter. The order parameter drives the transition of all involved moduli tensors such as elastic, dielectric and piezoelectric moduli, which in turn maintain their typical features and stability as a result of a selected phase-transition function. The model is described in coordinate-invariant form and implemented into a finite element framework with implicit time integration of the evolution equation. Representative numerical examples in two and three dimensions demonstrate the main features of the constitutive model and the numerical stability of the formulation. |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 04 Mai 2022 07:39 |
Letzte Änderung: | 04 Mai 2022 07:39 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |