Dornisch, Wolfgang ; Müller, Ralf ; Klinkel, Sven (2015)
An efficient and robust Reissner–Mindlin shell formulation for isogeometric analysis.
In: PAMM — Proceedings in Applied Mathematics and Mechanics, 15 (1)
doi: 10.1002/pamm.201510084
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The novel idea of isogeometric analysis is to use the basis functions of the geometry description of the design model also for the analysis. Thus, the geometry is represented exactly on element level. A closer integration of design and analysis is fostered by the usage of one common geometry model for design and analysis. A prevalent choice for the geometry description in isogeometric shell analysis are Non-Uniform Rational B-spline (NURBS) surfaces, which are commonly used in industrial design software to model thin structures. In order to directly compute structures defined by NURBS surfaces, an efficient isogeometric shell formulation is required. In this contribution an isogeometric Reissner–Mindlin shell formulation derived from the continuum theory is presented. The shell body is described by a shell reference surface, which is defined by NURBS surfaces, and a director vector. The director vector in the current configuration is computed by an orthogonal rotation using Rodrigues' tensor in every integration point. The axial vector of the rotation is interpolated. A multiplicative update formulation for the rotations accounts for finite rotations. A benchmark example shows the superior accuracy of the presented shell formulation for nonlinear computations. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2015 |
Autor(en): | Dornisch, Wolfgang ; Müller, Ralf ; Klinkel, Sven |
Art des Eintrags: | Bibliographie |
Titel: | An efficient and robust Reissner–Mindlin shell formulation for isogeometric analysis |
Sprache: | Englisch |
Publikationsjahr: | 2015 |
Verlag: | Wiley |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | PAMM — Proceedings in Applied Mathematics and Mechanics |
Jahrgang/Volume einer Zeitschrift: | 15 |
(Heft-)Nummer: | 1 |
DOI: | 10.1002/pamm.201510084 |
URL / URN: | https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.2015100... |
Kurzbeschreibung (Abstract): | The novel idea of isogeometric analysis is to use the basis functions of the geometry description of the design model also for the analysis. Thus, the geometry is represented exactly on element level. A closer integration of design and analysis is fostered by the usage of one common geometry model for design and analysis. A prevalent choice for the geometry description in isogeometric shell analysis are Non-Uniform Rational B-spline (NURBS) surfaces, which are commonly used in industrial design software to model thin structures. In order to directly compute structures defined by NURBS surfaces, an efficient isogeometric shell formulation is required. In this contribution an isogeometric Reissner–Mindlin shell formulation derived from the continuum theory is presented. The shell body is described by a shell reference surface, which is defined by NURBS surfaces, and a director vector. The director vector in the current configuration is computed by an orthogonal rotation using Rodrigues' tensor in every integration point. The axial vector of the rotation is interpolated. A multiplicative update formulation for the rotations accounts for finite rotations. A benchmark example shows the superior accuracy of the presented shell formulation for nonlinear computations. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 04 Mai 2022 05:23 |
Letzte Änderung: | 04 Mai 2022 05:23 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |