Schlüter, Alexander ; Kuhn, Charlotte ; Müller, Ralf (2014)
Phase Field Approximation of Dynamic Brittle Fracture.
In: PAMM, 14 (1)
doi: 10.1002/pamm.201410059
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The numerical assessment of fracture has gained importance in fields like the safety analysis of technical structures or the hydraulic fracturing process. The modelling technique discussed in this work is the phase field method which introduces an additional scalar field. The smooth phase field distinguishes broken from undamaged material and thus describes cracks in a continuum. The model consists of two coupled partial differential equations - the equation of motion including the constitutive behaviour of the material and a phase field evolution equation. The crack growth follows implicitly from the solution of this system of PDEs. The numerical solution with finite elements can be accelerated with an algorithm that performs computationally extensive tasks on a graphic processing unit (GPU). A numerical example illustrates the capability of the model to reproduce realistic features of dynamic brittle fracture. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2014 |
Autor(en): | Schlüter, Alexander ; Kuhn, Charlotte ; Müller, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Phase Field Approximation of Dynamic Brittle Fracture |
Sprache: | Englisch |
Publikationsjahr: | 22 Dezember 2014 |
Verlag: | Wiley |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | PAMM |
Jahrgang/Volume einer Zeitschrift: | 14 |
(Heft-)Nummer: | 1 |
DOI: | 10.1002/pamm.201410059 |
URL / URN: | https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.2014100... |
Kurzbeschreibung (Abstract): | The numerical assessment of fracture has gained importance in fields like the safety analysis of technical structures or the hydraulic fracturing process. The modelling technique discussed in this work is the phase field method which introduces an additional scalar field. The smooth phase field distinguishes broken from undamaged material and thus describes cracks in a continuum. The model consists of two coupled partial differential equations - the equation of motion including the constitutive behaviour of the material and a phase field evolution equation. The crack growth follows implicitly from the solution of this system of PDEs. The numerical solution with finite elements can be accelerated with an algorithm that performs computationally extensive tasks on a graphic processing unit (GPU). A numerical example illustrates the capability of the model to reproduce realistic features of dynamic brittle fracture. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 04 Mai 2022 09:30 |
Letzte Änderung: | 04 Mai 2022 09:30 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |