Schmitt, Regina ; Mayer, Patrick ; Kirsch, Benjamin ; Aurich, Jan ; Kuhn, Charlotte ; Müller, Ralf ; Bhattacharya, Kaushik (2014)
A Phase Field Approach for Martensitic Transformations and Crystal Plasticity.
In: PAMM — Proceedings in Applied Mathematics and Mechanics, 14 (1)
doi: 10.1002/pamm.201410179
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
This work is motivated by cryogenic turning which allows end shape machining and simultaneously attaining a hardened surface due to deformation induced martensitic transformations. To study the process on the microscale, a multivariant phase field model for martensitic transformations in conjunction with a crystal plastic material model is introduced. The evolution of microstructure is assumed to follow a time-dependent Ginzburg-Landau equation. To solve the field equations the finite element method is used. Time integration is performed with Euler backward schemes, on the global level for the evolution equation of the phase field, and on the element level for the crystal plastic material law. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2014 |
Autor(en): | Schmitt, Regina ; Mayer, Patrick ; Kirsch, Benjamin ; Aurich, Jan ; Kuhn, Charlotte ; Müller, Ralf ; Bhattacharya, Kaushik |
Art des Eintrags: | Bibliographie |
Titel: | A Phase Field Approach for Martensitic Transformations and Crystal Plasticity |
Sprache: | Englisch |
Publikationsjahr: | 2014 |
Verlag: | Wiley |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | PAMM — Proceedings in Applied Mathematics and Mechanics |
Jahrgang/Volume einer Zeitschrift: | 14 |
(Heft-)Nummer: | 1 |
DOI: | 10.1002/pamm.201410179 |
URL / URN: | https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.2014101... |
Kurzbeschreibung (Abstract): | This work is motivated by cryogenic turning which allows end shape machining and simultaneously attaining a hardened surface due to deformation induced martensitic transformations. To study the process on the microscale, a multivariant phase field model for martensitic transformations in conjunction with a crystal plastic material model is introduced. The evolution of microstructure is assumed to follow a time-dependent Ginzburg-Landau equation. To solve the field equations the finite element method is used. Time integration is performed with Euler backward schemes, on the global level for the evolution equation of the phase field, and on the element level for the crystal plastic material law. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 04 Mai 2022 05:15 |
Letzte Änderung: | 04 Mai 2022 05:15 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |