Sobota, P. M. ; Dornisch, W. ; Müller, R. ; Klinkel, S. (2017)
Implicit dynamic analysis using an isogeometric Reissner-Mindlin shell formulation.
In: International Journal for Numerical Methods in Engineering, 110 (9)
doi: 10.1002/nme.5429
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In isogeometric analysis, identical basis functions are used for geometrical representation and analysis. In this work, non-uniform rational basis splines basis functions are applied in an isoparametric approach. An isogeometric Reissner–Mindlin shell formulation for implicit dynamic calculations using the Galerkin method is presented. A consistent as well as a lumped matrix formulation is implemented. The suitability of the developed shell formulation for natural frequency analysis is demonstrated by a numerical example. In a second set of examples, transient problems of plane and curved geometries undergoing large deformations in combination with nonlinear material behavior are investigated. Via a zero-thickness stress algorithm for arbitrary material models, a J2-plasticity constitutive law is implemented. In the numerical examples, the effectiveness, robustness, and superior accuracy of a continuous interpolation method of the shell director vector is compared with experimental results and alternative numerical approaches. Copyright © 2016 John Wiley & Sons, Ltd.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2017 |
Autor(en): | Sobota, P. M. ; Dornisch, W. ; Müller, R. ; Klinkel, S. |
Art des Eintrags: | Bibliographie |
Titel: | Implicit dynamic analysis using an isogeometric Reissner-Mindlin shell formulation |
Sprache: | Englisch |
Publikationsjahr: | 1 Juni 2017 |
Verlag: | Wiley |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | International Journal for Numerical Methods in Engineering |
Jahrgang/Volume einer Zeitschrift: | 110 |
(Heft-)Nummer: | 9 |
DOI: | 10.1002/nme.5429 |
URL / URN: | https://onlinelibrary.wiley.com/doi/10.1002/nme.5429 |
Kurzbeschreibung (Abstract): | In isogeometric analysis, identical basis functions are used for geometrical representation and analysis. In this work, non-uniform rational basis splines basis functions are applied in an isoparametric approach. An isogeometric Reissner–Mindlin shell formulation for implicit dynamic calculations using the Galerkin method is presented. A consistent as well as a lumped matrix formulation is implemented. The suitability of the developed shell formulation for natural frequency analysis is demonstrated by a numerical example. In a second set of examples, transient problems of plane and curved geometries undergoing large deformations in combination with nonlinear material behavior are investigated. Via a zero-thickness stress algorithm for arbitrary material models, a J2-plasticity constitutive law is implemented. In the numerical examples, the effectiveness, robustness, and superior accuracy of a continuous interpolation method of the shell director vector is compared with experimental results and alternative numerical approaches. Copyright © 2016 John Wiley & Sons, Ltd. |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 04 Mai 2022 12:58 |
Letzte Änderung: | 04 Mai 2022 12:58 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |