TU Darmstadt / ULB / TUbiblio

3D inhomogeneous, misfitting second phase particles-equilibrium shapes and morphological development

Müller, R. ; Gross, D. (1999)
3D inhomogeneous, misfitting second phase particles-equilibrium shapes and morphological development.
In: Computational Materials Science, 16 (1)
doi: 10.1016/S0927-0256(99)00045-2
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A 3D simulation of equilibrium shapes of precipitates forming from diffusive phase transitions is presented. The concept of generalized forces is used to take elastic and interfacial energy into consideration when calculating the equilibrium morphologies. By using shape optimization techniques an efficient iterative scheme for finding equilibrium morphologies is presented. A first step towards simulating the temporal evolution of the microstructure is undertaken, by proposing a simple generalized evolution law. The numerical simulations underline the importance of elastic strain energy in the developing of certain microstructures, such as convex, concave, prolate and oblate cuboids. It is elaborated that particle size together with stiffness ratio between particle and matrix play an significant role.

Typ des Eintrags: Artikel
Erschienen: 1999
Autor(en): Müller, R. ; Gross, D.
Art des Eintrags: Bibliographie
Titel: 3D inhomogeneous, misfitting second phase particles-equilibrium shapes and morphological development
Sprache: Englisch
Publikationsjahr: Dezember 1999
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computational Materials Science
Jahrgang/Volume einer Zeitschrift: 16
(Heft-)Nummer: 1
DOI: 10.1016/S0927-0256(99)00045-2
URL / URN: https://www.sciencedirect.com/science/article/pii/S092702569...
Kurzbeschreibung (Abstract):

A 3D simulation of equilibrium shapes of precipitates forming from diffusive phase transitions is presented. The concept of generalized forces is used to take elastic and interfacial energy into consideration when calculating the equilibrium morphologies. By using shape optimization techniques an efficient iterative scheme for finding equilibrium morphologies is presented. A first step towards simulating the temporal evolution of the microstructure is undertaken, by proposing a simple generalized evolution law. The numerical simulations underline the importance of elastic strain energy in the developing of certain microstructures, such as convex, concave, prolate and oblate cuboids. It is elaborated that particle size together with stiffness ratio between particle and matrix play an significant role.

Freie Schlagworte: Micromechanics, Anisotropy, Phase transition, Shape optimization
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 03 Mai 2022 09:42
Letzte Änderung: 03 Mai 2022 09:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen