Li, X.-Y. ; Wang, Y.-W. ; Li, P.-D. ; Kang, G.-Z. ; Müller, R. (2017)
Three-dimensional fundamental thermo-elastic field in an infinite space of two-dimensional hexagonal quasi-crystal with a penny-shaped/half-infinite plane crack.
In: Theoretical and Applied Fracture Mechanics, 88
doi: 10.1016/j.tafmec.2016.11.005
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In the present work, a penny-shaped/half-infinite plane crack problem is investigated in the framework of thermo-elasticity of two-dimensional quasi-crystals. In view of the symmetry with respect to the crack plane, the original problem is formulated by a mixed boundary-value problem defined in a half-space. The boundary integral equations are derived by virtue of the general solution and the method of generalized potential theory. For the crack subjected to a pair of point temperature loadings, the corresponding fundamental thermo-elastic field variables are exactly and explicitly obtained in terms of elementary functions. Furthermore, the physical quantities on the crack plane, which are important in fracture mechanics, are given. Numerical calculations are carried out to discuss the validity of the present solutions and to characterize the thermo-phonon-phason coupling effect. The present analytical solutions may serve as benchmarks for future computational fracture mechanics of QCs and as a guide for the infrared thermography techniques in non-destructive detection.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2017 |
Autor(en): | Li, X.-Y. ; Wang, Y.-W. ; Li, P.-D. ; Kang, G.-Z. ; Müller, R. |
Art des Eintrags: | Bibliographie |
Titel: | Three-dimensional fundamental thermo-elastic field in an infinite space of two-dimensional hexagonal quasi-crystal with a penny-shaped/half-infinite plane crack |
Sprache: | Englisch |
Publikationsjahr: | 21 Februar 2017 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Theoretical and Applied Fracture Mechanics |
Jahrgang/Volume einer Zeitschrift: | 88 |
DOI: | 10.1016/j.tafmec.2016.11.005 |
URL / URN: | https://www.sciencedirect.com/science/article/pii/S016784421... |
Kurzbeschreibung (Abstract): | In the present work, a penny-shaped/half-infinite plane crack problem is investigated in the framework of thermo-elasticity of two-dimensional quasi-crystals. In view of the symmetry with respect to the crack plane, the original problem is formulated by a mixed boundary-value problem defined in a half-space. The boundary integral equations are derived by virtue of the general solution and the method of generalized potential theory. For the crack subjected to a pair of point temperature loadings, the corresponding fundamental thermo-elastic field variables are exactly and explicitly obtained in terms of elementary functions. Furthermore, the physical quantities on the crack plane, which are important in fracture mechanics, are given. Numerical calculations are carried out to discuss the validity of the present solutions and to characterize the thermo-phonon-phason coupling effect. The present analytical solutions may serve as benchmarks for future computational fracture mechanics of QCs and as a guide for the infrared thermography techniques in non-destructive detection. |
Freie Schlagworte: | Fundamental solutions, Generalized potential theory method, Half-infinite plane crack, Penny-shaped crack, Two-dimensional hexagonal quasicrystal |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 04 Mai 2022 13:08 |
Letzte Änderung: | 04 Mai 2022 13:08 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |