Schrade, D. ; Müller, R. ; Gross, D. ; Keip, M.-A. ; Thai, H. ; Schröder, J. (2014)
An invariant formulation for phase field models in ferroelectrics.
In: International Journal of Solids and Structures, 51 (11-12)
doi: 10.1016/j.ijsolstr.2014.02.021
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
This paper introduces an electro-mechanically coupled phase field model for ferroelectric domain evolution based on an invariant formulation for transversely isotropic piezoelectric material behavior. The thermodynamic framework rests upon Gurtin’s notion of a micro-force system in conjunction with an associated micro-force balance. This leads to a formulation of the second law, from which a generalized Ginzburg–Landau evolution equation is derived. The invariant formulation of the thermodynamic potential provides a consistent way to obtain the order parameter dependent elastic stiffness, piezoelectric, and dielectric tensor. The model is reduced to 2d and implemented into a finite element framework. The material constants used in the simulations are adapted to meet the thermodynamic condition of a vanishing micro-force. It is found that the thermodynamic potential taken from the literature has to be extended in order to avoid a loss of positive definiteness of the stiffness and the dielectric tensor. The small-signal response is investigated in the presence and in the absence of the additional regularizing terms in the potential. The simulations show the pathological behavior of the model in case these terms are not taken into account. The paper closes with microstructure simulations concerning a ferroelectric nanodot subjected to an electric field, a cracked single crystal, and a ferroelectric bi-crystal.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2014 |
Autor(en): | Schrade, D. ; Müller, R. ; Gross, D. ; Keip, M.-A. ; Thai, H. ; Schröder, J. |
Art des Eintrags: | Bibliographie |
Titel: | An invariant formulation for phase field models in ferroelectrics |
Sprache: | Englisch |
Publikationsjahr: | 26 Februar 2014 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | International Journal of Solids and Structures |
Jahrgang/Volume einer Zeitschrift: | 51 |
(Heft-)Nummer: | 11-12 |
DOI: | 10.1016/j.ijsolstr.2014.02.021 |
URL / URN: | https://linkinghub.elsevier.com/retrieve/pii/S00207683140006... |
Kurzbeschreibung (Abstract): | This paper introduces an electro-mechanically coupled phase field model for ferroelectric domain evolution based on an invariant formulation for transversely isotropic piezoelectric material behavior. The thermodynamic framework rests upon Gurtin’s notion of a micro-force system in conjunction with an associated micro-force balance. This leads to a formulation of the second law, from which a generalized Ginzburg–Landau evolution equation is derived. The invariant formulation of the thermodynamic potential provides a consistent way to obtain the order parameter dependent elastic stiffness, piezoelectric, and dielectric tensor. The model is reduced to 2d and implemented into a finite element framework. The material constants used in the simulations are adapted to meet the thermodynamic condition of a vanishing micro-force. It is found that the thermodynamic potential taken from the literature has to be extended in order to avoid a loss of positive definiteness of the stiffness and the dielectric tensor. The small-signal response is investigated in the presence and in the absence of the additional regularizing terms in the potential. The simulations show the pathological behavior of the model in case these terms are not taken into account. The paper closes with microstructure simulations concerning a ferroelectric nanodot subjected to an electric field, a cracked single crystal, and a ferroelectric bi-crystal. |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 04 Mai 2022 13:17 |
Letzte Änderung: | 04 Mai 2022 13:17 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |