TU Darmstadt / ULB / TUbiblio

Time-harmonic crack problems in functionally graded piezoelectric solids via BIEM

Dineva, Petia ; Gross, Dietmar ; Müller, Ralf ; Rangelov, Tsviatko (2010)
Time-harmonic crack problems in functionally graded piezoelectric solids via BIEM.
In: Engineering Fracture Mechanics, 77 (7)
doi: 10.1016/j.engfracmech.2009.12.002
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In-plane crack analysis of functionally graded piezoelectric solids under time-harmonic loading is performed by using a non-hypersingular traction based boundary integral equation method (BIEM). The material parameters are assumed to vary quadratically with both spatial variables. A frequency dependent fundamental solution, as well as its derivatives and asymptotic expressions, is derived in closed-form by using an appropriate algebraic transformation for the displacement vector and the Radon transform. Numerical results for the stress intensity factors (SIFs) are discussed for different examples. The accuracy of the presented method is checked by comparison with available results from the literature. Investigated are the effects of the inhomogeneity parameters, the frequency of the applied electromechanical load and the geometry of the crack scenario on the K-factors.

Typ des Eintrags: Artikel
Erschienen: 2010
Autor(en): Dineva, Petia ; Gross, Dietmar ; Müller, Ralf ; Rangelov, Tsviatko
Art des Eintrags: Bibliographie
Titel: Time-harmonic crack problems in functionally graded piezoelectric solids via BIEM
Sprache: Englisch
Publikationsjahr: Mai 2010
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Engineering Fracture Mechanics
Jahrgang/Volume einer Zeitschrift: 77
(Heft-)Nummer: 7
DOI: 10.1016/j.engfracmech.2009.12.002
URL / URN: https://linkinghub.elsevier.com/retrieve/pii/S00137944090037...
Kurzbeschreibung (Abstract):

In-plane crack analysis of functionally graded piezoelectric solids under time-harmonic loading is performed by using a non-hypersingular traction based boundary integral equation method (BIEM). The material parameters are assumed to vary quadratically with both spatial variables. A frequency dependent fundamental solution, as well as its derivatives and asymptotic expressions, is derived in closed-form by using an appropriate algebraic transformation for the displacement vector and the Radon transform. Numerical results for the stress intensity factors (SIFs) are discussed for different examples. The accuracy of the presented method is checked by comparison with available results from the literature. Investigated are the effects of the inhomogeneity parameters, the frequency of the applied electromechanical load and the geometry of the crack scenario on the K-factors.

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 04 Mai 2022 14:00
Letzte Änderung: 04 Mai 2022 14:00
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen