Dineva, Petia ; Gross, Dietmar ; Müller, Ralf ; Rangelov, Tsviatko (2010)
Time-harmonic crack problems in functionally graded piezoelectric solids via BIEM.
In: Engineering Fracture Mechanics, 77 (7)
doi: 10.1016/j.engfracmech.2009.12.002
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In-plane crack analysis of functionally graded piezoelectric solids under time-harmonic loading is performed by using a non-hypersingular traction based boundary integral equation method (BIEM). The material parameters are assumed to vary quadratically with both spatial variables. A frequency dependent fundamental solution, as well as its derivatives and asymptotic expressions, is derived in closed-form by using an appropriate algebraic transformation for the displacement vector and the Radon transform. Numerical results for the stress intensity factors (SIFs) are discussed for different examples. The accuracy of the presented method is checked by comparison with available results from the literature. Investigated are the effects of the inhomogeneity parameters, the frequency of the applied electromechanical load and the geometry of the crack scenario on the K-factors.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2010 |
Autor(en): | Dineva, Petia ; Gross, Dietmar ; Müller, Ralf ; Rangelov, Tsviatko |
Art des Eintrags: | Bibliographie |
Titel: | Time-harmonic crack problems in functionally graded piezoelectric solids via BIEM |
Sprache: | Englisch |
Publikationsjahr: | Mai 2010 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Engineering Fracture Mechanics |
Jahrgang/Volume einer Zeitschrift: | 77 |
(Heft-)Nummer: | 7 |
DOI: | 10.1016/j.engfracmech.2009.12.002 |
URL / URN: | https://linkinghub.elsevier.com/retrieve/pii/S00137944090037... |
Kurzbeschreibung (Abstract): | In-plane crack analysis of functionally graded piezoelectric solids under time-harmonic loading is performed by using a non-hypersingular traction based boundary integral equation method (BIEM). The material parameters are assumed to vary quadratically with both spatial variables. A frequency dependent fundamental solution, as well as its derivatives and asymptotic expressions, is derived in closed-form by using an appropriate algebraic transformation for the displacement vector and the Radon transform. Numerical results for the stress intensity factors (SIFs) are discussed for different examples. The accuracy of the presented method is checked by comparison with available results from the literature. Investigated are the effects of the inhomogeneity parameters, the frequency of the applied electromechanical load and the geometry of the crack scenario on the K-factors. |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 04 Mai 2022 14:00 |
Letzte Änderung: | 04 Mai 2022 14:00 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |