TU Darmstadt / ULB / TUbiblio

Phase field model for the martensitic transformation: comparison of the Voigt/Taylor and Khachaturyan approach

Schmidt, Simon David ; Ammar, Kais ; Dornisch, Wolfgang ; Forest, Samuel ; Müller, Ralf (2021)
Phase field model for the martensitic transformation: comparison of the Voigt/Taylor and Khachaturyan approach.
In: Continuum Mechanics and Thermodynamics, 33 (5)
doi: 10.1007/s00161-021-01007-1
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Iron and steels are allotropes, meaning they exhibit different crystal configurations. The martensitic transformation is crucial for a variety of processes, such as hardening. It is induced by a combination of undercooling and mechanical deformation. Due to the changing material properties within the phases, and due to topological changes that might occur during the transformation, a phase field approach was chosen that incorporates both the mechanical and the chemical aspect of this problem. A comparison of the Voigt/Taylor approach to the Khachaturyan approach within a multi-variant phase field modeling of the martensitic transformation including a chemical and a mechanical energy contribution is presented in this paper. The model was implemented in the finite element codes FEAP and Z-set independently. Numerical examples are given in order to highlight the features of this model.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Schmidt, Simon David ; Ammar, Kais ; Dornisch, Wolfgang ; Forest, Samuel ; Müller, Ralf
Art des Eintrags: Bibliographie
Titel: Phase field model for the martensitic transformation: comparison of the Voigt/Taylor and Khachaturyan approach
Sprache: Englisch
Publikationsjahr: 15 April 2021
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Continuum Mechanics and Thermodynamics
Jahrgang/Volume einer Zeitschrift: 33
(Heft-)Nummer: 5
DOI: 10.1007/s00161-021-01007-1
URL / URN: https://link.springer.com/10.1007/s00161-021-01007-1
Kurzbeschreibung (Abstract):

Iron and steels are allotropes, meaning they exhibit different crystal configurations. The martensitic transformation is crucial for a variety of processes, such as hardening. It is induced by a combination of undercooling and mechanical deformation. Due to the changing material properties within the phases, and due to topological changes that might occur during the transformation, a phase field approach was chosen that incorporates both the mechanical and the chemical aspect of this problem. A comparison of the Voigt/Taylor approach to the Khachaturyan approach within a multi-variant phase field modeling of the martensitic transformation including a chemical and a mechanical energy contribution is presented in this paper. The model was implemented in the finite element codes FEAP and Z-set independently. Numerical examples are given in order to highlight the features of this model.

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 04 Mai 2022 13:56
Letzte Änderung: 04 Mai 2022 13:56
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen