TU Darmstadt / ULB / TUbiblio

Investigating the stability of the phase field solution of equilibrium droplet configurations by eigenvalues and eigenvectors

Diewald, Felix ; Kuhn, Charlotte ; Heier, Michaela ; Langenbach, Kai ; Horsch, Martin ; Hasse, Hans ; Müller, Ralf (2018)
Investigating the stability of the phase field solution of equilibrium droplet configurations by eigenvalues and eigenvectors.
In: Computational Materials Science, 141
doi: 10.1016/j.commatsci.2017.08.029
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Phase field models have recently been used to investigate the physical behavior of droplets in static as well as dynamic situations. As those models are often driven by an Allen-Cahn evolution equation, their stationary solution is given by the first order optimality condition of an energy functional. This includes the possibility of computing saddle points and maxima rather than minima of the energy functional. The present work shows the post-processing of eigenvalues and eigenvectors of the system matrix of the phase field model in order to investigate the stability of equilibrium droplet configurations. This postprocessing can easily be ported to other evolution equations. The underlying phase field model is described and the resulting discrete finite element eigenvalue problem is stated. The investigation of eigenvalues and eigenvectors is illustrated by examples.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Diewald, Felix ; Kuhn, Charlotte ; Heier, Michaela ; Langenbach, Kai ; Horsch, Martin ; Hasse, Hans ; Müller, Ralf
Art des Eintrags: Bibliographie
Titel: Investigating the stability of the phase field solution of equilibrium droplet configurations by eigenvalues and eigenvectors
Sprache: Englisch
Publikationsjahr: Januar 2018
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computational Materials Science
Jahrgang/Volume einer Zeitschrift: 141
DOI: 10.1016/j.commatsci.2017.08.029
URL / URN: https://linkinghub.elsevier.com/retrieve/pii/S09270256173045...
Kurzbeschreibung (Abstract):

Phase field models have recently been used to investigate the physical behavior of droplets in static as well as dynamic situations. As those models are often driven by an Allen-Cahn evolution equation, their stationary solution is given by the first order optimality condition of an energy functional. This includes the possibility of computing saddle points and maxima rather than minima of the energy functional. The present work shows the post-processing of eigenvalues and eigenvectors of the system matrix of the phase field model in order to investigate the stability of equilibrium droplet configurations. This postprocessing can easily be ported to other evolution equations. The underlying phase field model is described and the resulting discrete finite element eigenvalue problem is stated. The investigation of eigenvalues and eigenvectors is illustrated by examples.

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 04 Mai 2022 13:34
Letzte Änderung: 04 Mai 2022 13:34
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen