TU Darmstadt / ULB / TUbiblio

Phase field approximation of dynamic brittle fracture

Schlüter, Alexander ; Willenbücher, Adrian ; Kuhn, Charlotte ; Müller, Ralf (2014)
Phase field approximation of dynamic brittle fracture.
In: Computational Mechanics, 54 (5)
doi: 10.1007/s00466-014-1045-x
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Numerical methods that are able to predict the failure of technical structures due to fracture are important in many engineering applications. One of these approaches, the so-called phase field method, represents cracks by means of an additional continuous field variable. This strategy avoids some of the main drawbacks of a sharp interface description of cracks. For example, it is not necessary to track or model crack faces explicitly, which allows a simple algorithmic treatment. The phase field model for brittle fracture presented in Kuhn and Müller (Eng Fract Mech 77(18):3625–3634, 2010) assumes quasi-static loading conditions. However dynamic effects have a great impact on the crack growth in many practical applications. Therefore this investigation presents an extension of the quasi-static phase field model for fracture from Kuhn and Müller (Eng Fract Mech 77(18):3625–3634, 2010) to the dynamic case. First of all Hamilton’s principle is applied to derive a coupled set of Euler-Lagrange equations that govern the mechanical behaviour of the body as well as the crack growth. Subsequently the model is implemented in a finite element scheme which allows to solve several test problems numerically. The numerical examples illustrate the capabilities of the developed approach to dynamic fracture in brittle materials.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Schlüter, Alexander ; Willenbücher, Adrian ; Kuhn, Charlotte ; Müller, Ralf
Art des Eintrags: Bibliographie
Titel: Phase field approximation of dynamic brittle fracture
Sprache: Englisch
Publikationsjahr: November 2014
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computational Mechanics
Jahrgang/Volume einer Zeitschrift: 54
(Heft-)Nummer: 5
DOI: 10.1007/s00466-014-1045-x
URL / URN: http://link.springer.com/10.1007/s00466-014-1045-x
Kurzbeschreibung (Abstract):

Numerical methods that are able to predict the failure of technical structures due to fracture are important in many engineering applications. One of these approaches, the so-called phase field method, represents cracks by means of an additional continuous field variable. This strategy avoids some of the main drawbacks of a sharp interface description of cracks. For example, it is not necessary to track or model crack faces explicitly, which allows a simple algorithmic treatment. The phase field model for brittle fracture presented in Kuhn and Müller (Eng Fract Mech 77(18):3625–3634, 2010) assumes quasi-static loading conditions. However dynamic effects have a great impact on the crack growth in many practical applications. Therefore this investigation presents an extension of the quasi-static phase field model for fracture from Kuhn and Müller (Eng Fract Mech 77(18):3625–3634, 2010) to the dynamic case. First of all Hamilton’s principle is applied to derive a coupled set of Euler-Lagrange equations that govern the mechanical behaviour of the body as well as the crack growth. Subsequently the model is implemented in a finite element scheme which allows to solve several test problems numerically. The numerical examples illustrate the capabilities of the developed approach to dynamic fracture in brittle materials.

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 04 Mai 2022 09:45
Letzte Änderung: 04 Mai 2022 09:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen