Fischer, Paul ; Klassen, Markus ; Mergheim, Julia ; Steinmann, Paul ; Müller, Ralf (2010)
Isogeometric analysis of 2D gradient elasticity.
In: Computational Mechanics, 47 (3)
doi: 10.1007/s00466-010-0543-8
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In the present contribution the concept of isogeometric analysis is extended towards the numerical solution of the problem of gradient elasticity in two dimensions. In gradient elasticity the strain energy becomes a function of the strain and its derivative. This assumption results in a governing differential equation which contains fourth order derivatives of the displacements. The numerical solution of this equation with a displacement-based finite element method requires the use of C1-continuous elements, which are mostly limited to two dimensions and simple geometries. This motivates the implementation of the concept of isogeometric analysis for gradient elasticity. This NURBS based interpolation scheme naturally includes C1 and higher order continuity of the approximation of the displacements and the geometry. The numerical approach is implemented for two-dimensional problems of linear gradient elasticity and its convergence behavior is studied.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2010 |
Autor(en): | Fischer, Paul ; Klassen, Markus ; Mergheim, Julia ; Steinmann, Paul ; Müller, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Isogeometric analysis of 2D gradient elasticity |
Sprache: | Englisch |
Publikationsjahr: | 30 Oktober 2010 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Computational Mechanics |
Jahrgang/Volume einer Zeitschrift: | 47 |
(Heft-)Nummer: | 3 |
DOI: | 10.1007/s00466-010-0543-8 |
URL / URN: | http://link.springer.com/10.1007/s00466-010-0543-8 |
Kurzbeschreibung (Abstract): | In the present contribution the concept of isogeometric analysis is extended towards the numerical solution of the problem of gradient elasticity in two dimensions. In gradient elasticity the strain energy becomes a function of the strain and its derivative. This assumption results in a governing differential equation which contains fourth order derivatives of the displacements. The numerical solution of this equation with a displacement-based finite element method requires the use of C1-continuous elements, which are mostly limited to two dimensions and simple geometries. This motivates the implementation of the concept of isogeometric analysis for gradient elasticity. This NURBS based interpolation scheme naturally includes C1 and higher order continuity of the approximation of the displacements and the geometry. The numerical approach is implemented for two-dimensional problems of linear gradient elasticity and its convergence behavior is studied. |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 03 Mai 2022 07:37 |
Letzte Änderung: | 03 Mai 2022 07:37 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |