Schreiber, Christoph ; Müller, Ralf ; Kuhn, Charlotte (2021)
Phase field simulation of fatigue crack propagation under complex load situations.
In: Archive of Applied Mechanics, 91 (2)
doi: 10.1007/s00419-020-01821-0
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Within this work, we utilize the framework of phase field modeling for fracture in order to handle a very crucial issue in terms of designing technical structures, namely the phenomenon of fatigue crack growth. So far, phase field fracture models were applied to a number of problems in the field of fracture mechanics and were proven to yield reliable results even for complex crack problems. For crack growth due to cyclic fatigue, our basic approach considers an additional energy contribution entering the regularized energy density function accounting for crack driving forces associated with fatigue damage. With other words, the crack surface energy is not solely in competition with the time-dependent elastic strain energy but also with a contribution consisting of accumulated energies, which enables crack extension even for small maximum loads. The load time function applied to a certain structure has an essential effect on its fatigue life. Besides the pure magnitude of a certain load cycle, it is highly decisive at which point of the fatigue life a certain load cycle is applied. Furthermore, the level of the mean load has a significant effect. We show that the model developed within this study is able to predict realistic fatigue crack growth behavior in terms of accurate growth rates and also to account for mean stress effects and different stress ratios. These are important properties that must be treated accurately in order to yield an accurate model for arbitrary load sequences, where various amplitude loading occurs.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Schreiber, Christoph ; Müller, Ralf ; Kuhn, Charlotte |
Art des Eintrags: | Bibliographie |
Titel: | Phase field simulation of fatigue crack propagation under complex load situations |
Sprache: | Englisch |
Publikationsjahr: | Februar 2021 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Archive of Applied Mechanics |
Jahrgang/Volume einer Zeitschrift: | 91 |
(Heft-)Nummer: | 2 |
DOI: | 10.1007/s00419-020-01821-0 |
URL / URN: | http://link.springer.com/10.1007/s00419-020-01821-0 |
Kurzbeschreibung (Abstract): | Within this work, we utilize the framework of phase field modeling for fracture in order to handle a very crucial issue in terms of designing technical structures, namely the phenomenon of fatigue crack growth. So far, phase field fracture models were applied to a number of problems in the field of fracture mechanics and were proven to yield reliable results even for complex crack problems. For crack growth due to cyclic fatigue, our basic approach considers an additional energy contribution entering the regularized energy density function accounting for crack driving forces associated with fatigue damage. With other words, the crack surface energy is not solely in competition with the time-dependent elastic strain energy but also with a contribution consisting of accumulated energies, which enables crack extension even for small maximum loads. The load time function applied to a certain structure has an essential effect on its fatigue life. Besides the pure magnitude of a certain load cycle, it is highly decisive at which point of the fatigue life a certain load cycle is applied. Furthermore, the level of the mean load has a significant effect. We show that the model developed within this study is able to predict realistic fatigue crack growth behavior in terms of accurate growth rates and also to account for mean stress effects and different stress ratios. These are important properties that must be treated accurately in order to yield an accurate model for arbitrary load sequences, where various amplitude loading occurs. |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 03 Mai 2022 09:07 |
Letzte Änderung: | 03 Mai 2022 09:07 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |