TU Darmstadt / ULB / TUbiblio

Nanofluidic Immobilization and Growth Detection of Escherichia coli in a Chip for Antibiotic Susceptibility Testing

Busche, Jan F. ; Möller, Svenja ; Klein, Ann-Kathrin ; Stehr, Matthias ; Purr, Foelke ; Bassu, Margherita ; Burg, Thomas P. ; Dietzel, Andreas (2022)
Nanofluidic Immobilization and Growth Detection of Escherichia coli in a Chip for Antibiotic Susceptibility Testing.
In: Biosensors, 2022, 10 (10)
doi: 10.26083/tuprints-00015962
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Infections with antimicrobial resistant bacteria are a rising threat for global healthcare as more and more antibiotics lose their effectiveness against bacterial pathogens. To guarantee the long-term effectiveness of broad-spectrum antibiotics, they may only be prescribed when inevitably required. In order to make a reliable assessment of which antibiotics are effective, rapid point-of-care tests are needed. This can be achieved with fast phenotypic microfluidic tests, which can cope with low bacterial concentrations and work label-free. Here, we present a novel optofluidic chip with a cross-flow immobilization principle using a regular array of nanogaps to concentrate bacteria and detect their growth label-free under the influence of antibiotics. The interferometric measuring principle enabled the detection of the growth of Escherichia coli in under 4 h with a sample volume of 187.2 µL and a doubling time of 79 min. In proof-of-concept experiments, we could show that the method can distinguish between bacterial growth and its inhibition by antibiotics. The results indicate that the nanofluidic chip approach provides a very promising concept for future rapid and label-free antimicrobial susceptibility tests.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Busche, Jan F. ; Möller, Svenja ; Klein, Ann-Kathrin ; Stehr, Matthias ; Purr, Foelke ; Bassu, Margherita ; Burg, Thomas P. ; Dietzel, Andreas
Art des Eintrags: Zweitveröffentlichung
Titel: Nanofluidic Immobilization and Growth Detection of Escherichia coli in a Chip for Antibiotic Susceptibility Testing
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Biosensors
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 10
Kollation: 12 Seiten
DOI: 10.26083/tuprints-00015962
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15962
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

Infections with antimicrobial resistant bacteria are a rising threat for global healthcare as more and more antibiotics lose their effectiveness against bacterial pathogens. To guarantee the long-term effectiveness of broad-spectrum antibiotics, they may only be prescribed when inevitably required. In order to make a reliable assessment of which antibiotics are effective, rapid point-of-care tests are needed. This can be achieved with fast phenotypic microfluidic tests, which can cope with low bacterial concentrations and work label-free. Here, we present a novel optofluidic chip with a cross-flow immobilization principle using a regular array of nanogaps to concentrate bacteria and detect their growth label-free under the influence of antibiotics. The interferometric measuring principle enabled the detection of the growth of Escherichia coli in under 4 h with a sample volume of 187.2 µL and a doubling time of 79 min. In proof-of-concept experiments, we could show that the method can distinguish between bacterial growth and its inhibition by antibiotics. The results indicate that the nanofluidic chip approach provides a very promising concept for future rapid and label-free antimicrobial susceptibility tests.

Freie Schlagworte: optofluidic, nanofluidic, antibiotic resistance test, nano-grating, microfabrication
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-159624
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Integrierte Mikro-Nano-Systeme
Hinterlegungsdatum: 09 Feb 2022 14:56
Letzte Änderung: 10 Feb 2022 10:26
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen