TU Darmstadt / ULB / TUbiblio

Performing Realistic Workout Activity Recognition on Consumer Smartphones

Fu, Biying ; Kirchbuchner, Florian ; Kuijper, Arjan (2022)
Performing Realistic Workout Activity Recognition on Consumer Smartphones.
In: Technologies, 2022, 8 (4)
doi: 10.26083/tuprints-00017432
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Smartphones have become an essential part of our lives. Especially its computing power and its current specifications make a modern smartphone a powerful device for human activity recognition tasks. Equipped with various integrated sensors, a modern smartphone can be leveraged for lots of smart applications. We already investigated the possibility of using an unmodified commercial smartphone to recognize eight strength-based exercises. App-based workouts have become popular in the last few years. The advantage of using a mobile device is that you can practice anywhere at anytime. In our previous work, we proved the possibility of turning a commercial smartphone into an active sonar device to leverage the echo reflected from exercising movement close to the device. By conducting a test study with 14 participants, we showed the first results for cross person evaluation and the generalization ability of our inference models on disjoint participants. In this work, we extended another model to further improve the model generalizability and provided a thorough comparison of our proposed system to other existing state-of-the-art approaches. Finally, a concept of counting the repetitions is also provided in this study as a parallel task to classification.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Fu, Biying ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Zweitveröffentlichung
Titel: Performing Realistic Workout Activity Recognition on Consumer Smartphones
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Technologies
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 4
Kollation: 17 Seiten
DOI: 10.26083/tuprints-00017432
URL / URN: https://tuprints.ulb.tu-darmstadt.de/17432
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

Smartphones have become an essential part of our lives. Especially its computing power and its current specifications make a modern smartphone a powerful device for human activity recognition tasks. Equipped with various integrated sensors, a modern smartphone can be leveraged for lots of smart applications. We already investigated the possibility of using an unmodified commercial smartphone to recognize eight strength-based exercises. App-based workouts have become popular in the last few years. The advantage of using a mobile device is that you can practice anywhere at anytime. In our previous work, we proved the possibility of turning a commercial smartphone into an active sonar device to leverage the echo reflected from exercising movement close to the device. By conducting a test study with 14 participants, we showed the first results for cross person evaluation and the generalization ability of our inference models on disjoint participants. In this work, we extended another model to further improve the model generalizability and provided a thorough comparison of our proposed system to other existing state-of-the-art approaches. Finally, a concept of counting the repetitions is also provided in this study as a parallel task to classification.

Freie Schlagworte: ubiquitous sensing, ultrasonic sensing, mobile sensing, human activity recognition, proximity sensing, exercise recognition
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-174321
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 09 Feb 2022 14:43
Letzte Änderung: 10 Feb 2022 10:15
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen