TU Darmstadt / ULB / TUbiblio

Phase-field modelling of paramagnetic austenite–ferromagnetic martensite transformation coupled with mechanics and micromagnetics

Ohmer, Dominik ; Yi, Min ; Gutfleisch, Oliver ; Xu, Bai-Xiang (2022)
Phase-field modelling of paramagnetic austenite–ferromagnetic martensite transformation coupled with mechanics and micromagnetics.
In: International Journal of Solids and Structures, 238
doi: 10.1016/j.ijsolstr.2021.111365
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A three-dimensional phase-field model is proposed for simulating the magnetic martensitic phase transformation. The model considers a paramagnetic cubic austenite to ferromagnetic tetragonal martensite transition, as it occurs in magnetic Heusler alloys like NiMnGa, and is based on a Landau 2-3-4 polynomial with temperature dependent coefficients. The paramagnetic–ferromagnetic transition is recaptured by interpolating the micromagnetic energy as a function of the order parameter for the ferroelastic domains. The model is numerically implemented in real space by finite element (FE) method. FE simulations in the martensitic state show that the model is capable to correctly recapture the ferroelastic and -magnetic microstructures, as well as the influence of external stimuli. Simulation results indicate that the paramagnetic austenite to ferromagnetic martensite transition shifts towards higher temperatures when a magnetic field or compressive stress is applied. The dependence of the phase transition temperature shift on the strength of the external stimulus is uncovered as well. Simulation of the phase transition in magnetocaloric materials is of high interest for the development of energy-efficient magnetocaloric cooling devices.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Ohmer, Dominik ; Yi, Min ; Gutfleisch, Oliver ; Xu, Bai-Xiang
Art des Eintrags: Bibliographie
Titel: Phase-field modelling of paramagnetic austenite–ferromagnetic martensite transformation coupled with mechanics and micromagnetics
Sprache: Englisch
Publikationsjahr: 1 März 2022
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Solids and Structures
Jahrgang/Volume einer Zeitschrift: 238
DOI: 10.1016/j.ijsolstr.2021.111365
Kurzbeschreibung (Abstract):

A three-dimensional phase-field model is proposed for simulating the magnetic martensitic phase transformation. The model considers a paramagnetic cubic austenite to ferromagnetic tetragonal martensite transition, as it occurs in magnetic Heusler alloys like NiMnGa, and is based on a Landau 2-3-4 polynomial with temperature dependent coefficients. The paramagnetic–ferromagnetic transition is recaptured by interpolating the micromagnetic energy as a function of the order parameter for the ferroelastic domains. The model is numerically implemented in real space by finite element (FE) method. FE simulations in the martensitic state show that the model is capable to correctly recapture the ferroelastic and -magnetic microstructures, as well as the influence of external stimuli. Simulation results indicate that the paramagnetic austenite to ferromagnetic martensite transition shifts towards higher temperatures when a magnetic field or compressive stress is applied. The dependence of the phase transition temperature shift on the strength of the external stimulus is uncovered as well. Simulation of the phase transition in magnetocaloric materials is of high interest for the development of energy-efficient magnetocaloric cooling devices.

Freie Schlagworte: Phase-field model Micromagnetics First-order phase transition
Zusätzliche Informationen:

Art.No.: 111365

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 03 Feb 2022 14:02
Letzte Änderung: 09 Aug 2022 09:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen