TU Darmstadt / ULB / TUbiblio

Estimation of Uncertainty in the Lateral Vibration Attenuation of a Beam with Piezo-Elastic Supports by Neural Networks

Götz, Benedict ; Kersting, Sebastian (2022)
Estimation of Uncertainty in the Lateral Vibration Attenuation of a Beam with Piezo-Elastic Supports by Neural Networks.
In: Applied Mechanics and Materials, 2018, 885
doi: 10.26083/tuprints-00020433
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Quantification of uncertainty in technical systems is often based on surrogate models of corresponding simulation models. Usually, the underlying simulation model does not describe the reality perfectly, and consequently the surrogate model will be imperfect.In this article we propose an improved surrogate model of the vibration attenuation of a beam with shunted piezoelectric transducers. Therefore, experimentally observed and simulated variations in the vibration attenuation are combined in the model estimation process, by using multi-layer feedforward neural networks. Based on this improved surrogate model, we construct a density estimate of the maximal amplitude in the vibration attenuation.The density estimate is used to analyze the uncertainty in the vibration attenuation, resulting from manufacturing variations.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Götz, Benedict ; Kersting, Sebastian
Art des Eintrags: Zweitveröffentlichung
Titel: Estimation of Uncertainty in the Lateral Vibration Attenuation of a Beam with Piezo-Elastic Supports by Neural Networks
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2018
Verlag: Trans Tech Publications Ltd.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applied Mechanics and Materials
Jahrgang/Volume einer Zeitschrift: 885
DOI: 10.26083/tuprints-00020433
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20433
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Quantification of uncertainty in technical systems is often based on surrogate models of corresponding simulation models. Usually, the underlying simulation model does not describe the reality perfectly, and consequently the surrogate model will be imperfect.In this article we propose an improved surrogate model of the vibration attenuation of a beam with shunted piezoelectric transducers. Therefore, experimentally observed and simulated variations in the vibration attenuation are combined in the model estimation process, by using multi-layer feedforward neural networks. Based on this improved surrogate model, we construct a density estimate of the maximal amplitude in the vibration attenuation.The density estimate is used to analyze the uncertainty in the vibration attenuation, resulting from manufacturing variations.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-204333
Zusätzliche Informationen:

Keywords: Density Estimation, Imperfect Model, Neural Network, Surrogate Model, Uncertainty Quantification

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik (SAM)
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Stochastik
Hinterlegungsdatum: 02 Feb 2022 14:01
Letzte Änderung: 03 Feb 2022 06:12
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen