TU Darmstadt / ULB / TUbiblio

Algebraic stability modes in rotational shear flow

Gebler, Tim ; Plümacher, Dominik ; Kahle, Judith ; Oberlack, Martin (2021)
Algebraic stability modes in rotational shear flow.
In: Fluid Dynamics Research, 53 (6)
doi: 10.1088/1873-7005/ac44f9
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We investigate the two-dimensional (2D) stability of rotational shear flows in an unbounded domain. The eigenvalue problem is formulated by using a novel algebraic mode decomposition distinct from the normal modes with temporal evolution . Based on the work of Nold and Oberlack (2013 Phys. Fluids 25 104101), we show how these new modes can be constructed from the symmetries of the linearized stability equation. For the azimuthal base flow velocity an additional symmetry exists, such that a mode with algebraic temporal evolution t s is found. s refers to an eigenvalue for the algebraic growth or decay of the kinetic energy of the perturbations. An eigenvalue problem for the viscous and inviscid stability using algebraic modes is formulated on an infinite domain with . An asymptotic analysis of the eigenfunctions shows that the flow is linearly stable under 2D perturbations. We find stable modes with the algebraic mode ansatz, which can not be obtained by a normal mode analysis. The stability results are in line with Rayleigh�s inflection point theorem.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Gebler, Tim ; Plümacher, Dominik ; Kahle, Judith ; Oberlack, Martin
Art des Eintrags: Bibliographie
Titel: Algebraic stability modes in rotational shear flow
Sprache: Englisch
Publikationsjahr: Dezember 2021
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Fluid Dynamics Research
Jahrgang/Volume einer Zeitschrift: 53
(Heft-)Nummer: 6
DOI: 10.1088/1873-7005/ac44f9
Kurzbeschreibung (Abstract):

We investigate the two-dimensional (2D) stability of rotational shear flows in an unbounded domain. The eigenvalue problem is formulated by using a novel algebraic mode decomposition distinct from the normal modes with temporal evolution . Based on the work of Nold and Oberlack (2013 Phys. Fluids 25 104101), we show how these new modes can be constructed from the symmetries of the linearized stability equation. For the azimuthal base flow velocity an additional symmetry exists, such that a mode with algebraic temporal evolution t s is found. s refers to an eigenvalue for the algebraic growth or decay of the kinetic energy of the perturbations. An eigenvalue problem for the viscous and inviscid stability using algebraic modes is formulated on an infinite domain with . An asymptotic analysis of the eigenfunctions shows that the flow is linearly stable under 2D perturbations. We find stable modes with the algebraic mode ansatz, which can not be obtained by a normal mode analysis. The stability results are in line with Rayleigh�s inflection point theorem.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy)
Hinterlegungsdatum: 28 Jan 2022 07:17
Letzte Änderung: 28 Jan 2022 07:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen