TU Darmstadt / ULB / TUbiblio

Conversion of a polysilazane‐modified cellulose‐based paper into a C/SiFe(N,C)O ceramic paper via thermal ammonolysis

Ott, Alexander ; Peter, Johannes ; Wiehl, Leonore ; Potapkin, Vasily ; Kramm, Ulrike I. ; Kleebe, Hans‐Joachim ; Riedel, Ralf ; Ionescu, Emanuel (2022)
Conversion of a polysilazane‐modified cellulose‐based paper into a C/SiFe(N,C)O ceramic paper via thermal ammonolysis.
In: International Journal of Applied Ceramic Technology, 19 (2)
doi: 10.1111/ijac.13869
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Cellulose-based paper samples were surface-modified by a polymeric single-source precursor prepared from perhydropolysilazane (PHPS) and iron(III)acetylacetonate (Fe(acac)(3)) and ammonolyzed at 500 degrees C, 700 degrees C, 900 degrees C, and 1000 degrees C, leading to C/SiFe(N,C)O-based ceramic papers with in situ-generated hierarchical micro/nano-morphology. As reference, cellulose-free samples were prepared under the same conditions. Upon thermal treatment, the microstructure evolutions of the resulting ceramic paper and the reference sample were comparatively investigated. Scanning electron microscopy (SEM) showed that for all temperatures, the ceramic papers exhibit the same morphology as the template, however, with noticeable shrinkage and curling, particularly evident at higher temperatures. X-ray diffraction (XRD) measurements of the reference samples and the ceramic papers showed a similar crystallization behavior and phase evolution in both materials. In the ceramic paper, the crystallization process seems to occur at a later time. The results provide a comprehensive understanding of the investigated C/SiFe(N,C)O-based ceramic system. It was shown that use of the cellulose-based paper template has the benefit of retaining the microstructure and furthermore, apart from transforming the cellulose fibers into turbostratic carbon, does not change the phase evolution during the polymer-to-ceramic transformation, allowing at the same time the manufacturing of novel morphologically complex parts by a convenient one-pot synthesis approach.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Ott, Alexander ; Peter, Johannes ; Wiehl, Leonore ; Potapkin, Vasily ; Kramm, Ulrike I. ; Kleebe, Hans‐Joachim ; Riedel, Ralf ; Ionescu, Emanuel
Art des Eintrags: Bibliographie
Titel: Conversion of a polysilazane‐modified cellulose‐based paper into a C/SiFe(N,C)O ceramic paper via thermal ammonolysis
Sprache: Englisch
Publikationsjahr: März 2022
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Applied Ceramic Technology
Jahrgang/Volume einer Zeitschrift: 19
(Heft-)Nummer: 2
DOI: 10.1111/ijac.13869
Kurzbeschreibung (Abstract):

Cellulose-based paper samples were surface-modified by a polymeric single-source precursor prepared from perhydropolysilazane (PHPS) and iron(III)acetylacetonate (Fe(acac)(3)) and ammonolyzed at 500 degrees C, 700 degrees C, 900 degrees C, and 1000 degrees C, leading to C/SiFe(N,C)O-based ceramic papers with in situ-generated hierarchical micro/nano-morphology. As reference, cellulose-free samples were prepared under the same conditions. Upon thermal treatment, the microstructure evolutions of the resulting ceramic paper and the reference sample were comparatively investigated. Scanning electron microscopy (SEM) showed that for all temperatures, the ceramic papers exhibit the same morphology as the template, however, with noticeable shrinkage and curling, particularly evident at higher temperatures. X-ray diffraction (XRD) measurements of the reference samples and the ceramic papers showed a similar crystallization behavior and phase evolution in both materials. In the ceramic paper, the crystallization process seems to occur at a later time. The results provide a comprehensive understanding of the investigated C/SiFe(N,C)O-based ceramic system. It was shown that use of the cellulose-based paper template has the benefit of retaining the microstructure and furthermore, apart from transforming the cellulose fibers into turbostratic carbon, does not change the phase evolution during the polymer-to-ceramic transformation, allowing at the same time the manufacturing of novel morphologically complex parts by a convenient one-pot synthesis approach.

Freie Schlagworte: microstructure, nanocomposites, polymer precursor, pyrolysis, synthesis, iron, nanocomposites, decomposition, evolution, fibres
Zusätzliche Informationen:

Online fist: 2021

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie > Fachgruppe Katalysatoren und Elektrokatalysatoren
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
TU-Projekte: DFG|IO64/14-1|Heisenberg-Förderung
Hinterlegungsdatum: 25 Jan 2022 06:49
Letzte Änderung: 08 Feb 2022 06:15
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen