Ott, Alexander ; Peter, Johannes ; Wiehl, Leonore ; Potapkin, Vasily ; Kramm, Ulrike I. ; Kleebe, Hans‐Joachim ; Riedel, Ralf ; Ionescu, Emanuel (2022)
Conversion of a polysilazane‐modified cellulose‐based paper into a C/SiFe(N,C)O ceramic paper via thermal ammonolysis.
In: International Journal of Applied Ceramic Technology, 19 (2)
doi: 10.1111/ijac.13869
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Cellulose-based paper samples were surface-modified by a polymeric single-source precursor prepared from perhydropolysilazane (PHPS) and iron(III)acetylacetonate (Fe(acac)(3)) and ammonolyzed at 500 degrees C, 700 degrees C, 900 degrees C, and 1000 degrees C, leading to C/SiFe(N,C)O-based ceramic papers with in situ-generated hierarchical micro/nano-morphology. As reference, cellulose-free samples were prepared under the same conditions. Upon thermal treatment, the microstructure evolutions of the resulting ceramic paper and the reference sample were comparatively investigated. Scanning electron microscopy (SEM) showed that for all temperatures, the ceramic papers exhibit the same morphology as the template, however, with noticeable shrinkage and curling, particularly evident at higher temperatures. X-ray diffraction (XRD) measurements of the reference samples and the ceramic papers showed a similar crystallization behavior and phase evolution in both materials. In the ceramic paper, the crystallization process seems to occur at a later time. The results provide a comprehensive understanding of the investigated C/SiFe(N,C)O-based ceramic system. It was shown that use of the cellulose-based paper template has the benefit of retaining the microstructure and furthermore, apart from transforming the cellulose fibers into turbostratic carbon, does not change the phase evolution during the polymer-to-ceramic transformation, allowing at the same time the manufacturing of novel morphologically complex parts by a convenient one-pot synthesis approach.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Ott, Alexander ; Peter, Johannes ; Wiehl, Leonore ; Potapkin, Vasily ; Kramm, Ulrike I. ; Kleebe, Hans‐Joachim ; Riedel, Ralf ; Ionescu, Emanuel |
Art des Eintrags: | Bibliographie |
Titel: | Conversion of a polysilazane‐modified cellulose‐based paper into a C/SiFe(N,C)O ceramic paper via thermal ammonolysis |
Sprache: | Englisch |
Publikationsjahr: | März 2022 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | International Journal of Applied Ceramic Technology |
Jahrgang/Volume einer Zeitschrift: | 19 |
(Heft-)Nummer: | 2 |
DOI: | 10.1111/ijac.13869 |
Kurzbeschreibung (Abstract): | Cellulose-based paper samples were surface-modified by a polymeric single-source precursor prepared from perhydropolysilazane (PHPS) and iron(III)acetylacetonate (Fe(acac)(3)) and ammonolyzed at 500 degrees C, 700 degrees C, 900 degrees C, and 1000 degrees C, leading to C/SiFe(N,C)O-based ceramic papers with in situ-generated hierarchical micro/nano-morphology. As reference, cellulose-free samples were prepared under the same conditions. Upon thermal treatment, the microstructure evolutions of the resulting ceramic paper and the reference sample were comparatively investigated. Scanning electron microscopy (SEM) showed that for all temperatures, the ceramic papers exhibit the same morphology as the template, however, with noticeable shrinkage and curling, particularly evident at higher temperatures. X-ray diffraction (XRD) measurements of the reference samples and the ceramic papers showed a similar crystallization behavior and phase evolution in both materials. In the ceramic paper, the crystallization process seems to occur at a later time. The results provide a comprehensive understanding of the investigated C/SiFe(N,C)O-based ceramic system. It was shown that use of the cellulose-based paper template has the benefit of retaining the microstructure and furthermore, apart from transforming the cellulose fibers into turbostratic carbon, does not change the phase evolution during the polymer-to-ceramic transformation, allowing at the same time the manufacturing of novel morphologically complex parts by a convenient one-pot synthesis approach. |
Freie Schlagworte: | microstructure, nanocomposites, polymer precursor, pyrolysis, synthesis, iron, nanocomposites, decomposition, evolution, fibres |
Zusätzliche Informationen: | Online fist: 2021 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie > Fachgruppe Katalysatoren und Elektrokatalysatoren 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe 07 Fachbereich Chemie 07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie |
TU-Projekte: | DFG|IO64/14-1|Heisenberg-Förderung |
Hinterlegungsdatum: | 25 Jan 2022 06:49 |
Letzte Änderung: | 08 Feb 2022 06:15 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |