TU Darmstadt / ULB / TUbiblio

Isogeometric sizing and shape optimization of 3D beams and lattice structures at large deformations

Weeger, Oliver (2022)
Isogeometric sizing and shape optimization of 3D beams and lattice structures at large deformations.
In: Structural and Multidisciplinary Optimization, 2022, 65 (2)
doi: 10.26083/tuprints-00020345
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

A computational method for optimizing the shape of the centerline curve and the spatial variation of geometric and material sizing parameters of the cross-sections of elastic, 3-dimensional beams and beam structures subject to large deformations is presented in this work. The approach is based on the concept of isogeometric analysis, i.e., the representation of geometry and the discretization of the numerical solution using spline functions. Here, mixed isogeometric collocation methods are used to discretize the geometrically exact 3D beam model. These spline representations are extended to the parameterization of the design variables, which are the initial centerline curves of the beams, as well as cross-sectional sizing properties, which may be varying along the beam axis and can be functionally graded through the cross-sections. To tailor the mechanical deformation behavior of a beam or beam structure, a nonlinear optimization problem is formulated and solved using gradient-based methods. For this purpose, all required gradients and sensitivities are derived analytically. The potential of this holistic design optimization approach is demonstrated in application to tailoring of elastic metamaterials and beam lattice structures, as well as 4D printing of multi-material laminate beams.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Weeger, Oliver
Art des Eintrags: Zweitveröffentlichung
Titel: Isogeometric sizing and shape optimization of 3D beams and lattice structures at large deformations
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Structural and Multidisciplinary Optimization
Jahrgang/Volume einer Zeitschrift: 65
(Heft-)Nummer: 2
Kollation: 22 Seiten
DOI: 10.26083/tuprints-00020345
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20345
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

A computational method for optimizing the shape of the centerline curve and the spatial variation of geometric and material sizing parameters of the cross-sections of elastic, 3-dimensional beams and beam structures subject to large deformations is presented in this work. The approach is based on the concept of isogeometric analysis, i.e., the representation of geometry and the discretization of the numerical solution using spline functions. Here, mixed isogeometric collocation methods are used to discretize the geometrically exact 3D beam model. These spline representations are extended to the parameterization of the design variables, which are the initial centerline curves of the beams, as well as cross-sectional sizing properties, which may be varying along the beam axis and can be functionally graded through the cross-sections. To tailor the mechanical deformation behavior of a beam or beam structure, a nonlinear optimization problem is formulated and solved using gradient-based methods. For this purpose, all required gradients and sensitivities are derived analytically. The potential of this holistic design optimization approach is demonstrated in application to tailoring of elastic metamaterials and beam lattice structures, as well as 4D printing of multi-material laminate beams.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-203451
Zusätzliche Informationen:

Keywords: Isogeometric analysis, Geometrically exact beams, Nonlinear design optimization, Shape optimization, Beam lattice structures

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 21 Jan 2022 08:03
Letzte Änderung: 06 Dez 2023 09:35
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen