TU Darmstadt / ULB / TUbiblio

Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures

Long, Teng ; Fortunato, Nuno M. ; Opahle, Ingo ; Zhang, Yixuan ; Samathrakis, Ilias ; Shen, Chen ; Gutfleisch, Oliver ; Zhang, Hongbin (2021)
Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures.
In: npj Computational Materials, 7 (66)
doi: 10.1038/s41524-021-00526-4
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Autonomous materials discovery with desired properties is one of the ultimate goals for materials science, and the current studies have been focusing mostly on high-throughput screening based on density functional theory calculations and forward modeling of physical properties using machine learning. Applying the deep learning techniques, we have developed a generative model, which can predict distinct stable crystal structures by optimizing the formation energy in the latent space. It is demonstrated that the optimization of physical properties can be integrated into the generative model as on-top screening or backward propagator, both with their own advantages. Applying the generative models on the binary Bi-Se system reveals that distinct crystal structures can be obtained covering the whole composition range, and the phases on the convex hull can be reproduced after the generated structures are fully relaxed to the equilibrium. The method can be extended to multicomponent systems for multi-objective optimization, which paves the way to achieve the inverse design of materials with optimal properties.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Long, Teng ; Fortunato, Nuno M. ; Opahle, Ingo ; Zhang, Yixuan ; Samathrakis, Ilias ; Shen, Chen ; Gutfleisch, Oliver ; Zhang, Hongbin
Art des Eintrags: Bibliographie
Titel: Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures
Sprache: Englisch
Publikationsjahr: 2021
Ort: London
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: npj Computational Materials
Jahrgang/Volume einer Zeitschrift: 7
(Heft-)Nummer: 66
Kollation: 7 Seiten
DOI: 10.1038/s41524-021-00526-4
Zugehörige Links:
Kurzbeschreibung (Abstract):

Autonomous materials discovery with desired properties is one of the ultimate goals for materials science, and the current studies have been focusing mostly on high-throughput screening based on density functional theory calculations and forward modeling of physical properties using machine learning. Applying the deep learning techniques, we have developed a generative model, which can predict distinct stable crystal structures by optimizing the formation energy in the latent space. It is demonstrated that the optimization of physical properties can be integrated into the generative model as on-top screening or backward propagator, both with their own advantages. Applying the generative models on the binary Bi-Se system reveals that distinct crystal structures can be obtained covering the whole composition range, and the phases on the convex hull can be reproduced after the generated structures are fully relaxed to the equilibrium. The method can be extended to multicomponent systems for multi-objective optimization, which paves the way to achieve the inverse design of materials with optimal properties.

ID-Nummer: Artikel-ID: 66
Zusätzliche Informationen:

Supported by China Scholarship Council (CSC), the European Research Council (ERC) under the EU Horizon 2020 research and innovation programme (Grant No. 743116-project Cool Innov), DFG, German Research Foundation – Project-ID 405553726 – TRR 270. Publication was supported by Open Access Publishing Fund of TU Darmstadt.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 20 Jan 2022 07:08
Letzte Änderung: 04 Okt 2024 08:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen