Muhammad, Qaisar Khushi ; Bishara, Hanna ; Porz, Lukas ; Dietz, Christian ; Ghidelli, M. ; Dehm, G. ; Frömling, Till (2022)
Dislocation-mediated electronic conductivity in rutile.
In: Materials Today Nano, 17
doi: 10.1016/j.mtnano.2021.100171
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
It has been recently shown that doping-like properties can be introduced into functional ceramics by inducing dislocations. Especially for TiO2, donor and acceptor-like behavior were observed depending on the type of introduced mesoscopic dislocation network. However, these early reports could not fully elucidate the mechanism behind it. In this work, we rationalize the electrical properties of dislocations by targeted microelectrode impedance measurements, local conductivity atomic force microscopy, and Kelvin probe force microscopy on deformed single crystals, comparing dislocation-rich and deficient regions. With the help of finite element method calculations, a semi-quantitative model for the effect of dislocations on the macroscopic electrical properties is developed. The model describes the dislocation bundles as highly conductive regions in which respective space charges overlap and induce temperature-independent, highly stable electronic conductivity. We illustrate the mechanism behind unique electrical properties tailored by introducing dislocations and believe that these results are the cornerstone in developing dislocation-tuned functionality in ceramics.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Muhammad, Qaisar Khushi ; Bishara, Hanna ; Porz, Lukas ; Dietz, Christian ; Ghidelli, M. ; Dehm, G. ; Frömling, Till |
Art des Eintrags: | Bibliographie |
Titel: | Dislocation-mediated electronic conductivity in rutile |
Sprache: | Englisch |
Publikationsjahr: | 17 Januar 2022 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Materials Today Nano |
Jahrgang/Volume einer Zeitschrift: | 17 |
DOI: | 10.1016/j.mtnano.2021.100171 |
Kurzbeschreibung (Abstract): | It has been recently shown that doping-like properties can be introduced into functional ceramics by inducing dislocations. Especially for TiO2, donor and acceptor-like behavior were observed depending on the type of introduced mesoscopic dislocation network. However, these early reports could not fully elucidate the mechanism behind it. In this work, we rationalize the electrical properties of dislocations by targeted microelectrode impedance measurements, local conductivity atomic force microscopy, and Kelvin probe force microscopy on deformed single crystals, comparing dislocation-rich and deficient regions. With the help of finite element method calculations, a semi-quantitative model for the effect of dislocations on the macroscopic electrical properties is developed. The model describes the dislocation bundles as highly conductive regions in which respective space charges overlap and induce temperature-independent, highly stable electronic conductivity. We illustrate the mechanism behind unique electrical properties tailored by introducing dislocations and believe that these results are the cornerstone in developing dislocation-tuned functionality in ceramics. |
Freie Schlagworte: | Dislocations, One-dimensional doping, Microelectrodes, Space charge, Electronic conductivity |
Zusätzliche Informationen: | Artikel-ID: 100171 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physics of Surfaces |
Hinterlegungsdatum: | 18 Jan 2022 06:43 |
Letzte Änderung: | 19 Jan 2022 06:25 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |