TU Darmstadt / ULB / TUbiblio

Predoped Oxygenated Defects Activate Nitrogen-Doped Graphene for the Oxygen Reduction Reaction

Jiang, Lin ; Dijk, Bas van ; Wu, Longfei ; Maheu, Clément ; Hofmann, Jan P. ; Tudor, Viorica ; Koper, Marc T. M. ; Hetterscheid, Dennis G. H. ; Schneider, Grégory F. (2022)
Predoped Oxygenated Defects Activate Nitrogen-Doped Graphene for the Oxygen Reduction Reaction.
In: ACS Catalysis, 12 (1)
doi: 10.1021/acscatal.1c03662
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The presence of defects and chemical dopants in metal-free carbon materials plays an important role in the electrocatalysis of the oxygen reduction reaction (ORR). The precise control and design of defects and dopants in carbon electrodes will allow the fundamental understanding of activity-structure correlations for tailoring catalytic performance of carbon-based, most particularly graphene-based, electrode materials. Herein, we adopted monolayer graphene – a model carbon-based electrode – for systematical introduction of nitrogen and oxygen dopants, together with vacancy defects, and studied their roles in catalyzing ORR. Compared to pristine graphene, nitrogen doping exhibited a limited effect on ORR activity. In contrast, nitrogen doping in graphene predoped with vacancy defects or oxygen enhanced the activities at 0.4 V vs the reversible hydrogen electrode (RHE) by 1.2 and 2.0 times, respectively. The optimal activity was achieved for nitrogen doping in graphene functionalized with oxygenated defects, 12.8 times more than nitrogen-doped and 7.7 times more than pristine graphene. More importantly, oxygenated defects are highly related to the 4e– pathway instead of nitrogen dopants. This work indicates a non-negligible contribution of oxygen and especially oxygenated vacancy defects for the catalytic activity of nitrogen-doped graphene.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Jiang, Lin ; Dijk, Bas van ; Wu, Longfei ; Maheu, Clément ; Hofmann, Jan P. ; Tudor, Viorica ; Koper, Marc T. M. ; Hetterscheid, Dennis G. H. ; Schneider, Grégory F.
Art des Eintrags: Bibliographie
Titel: Predoped Oxygenated Defects Activate Nitrogen-Doped Graphene for the Oxygen Reduction Reaction
Sprache: Englisch
Publikationsjahr: 2022
Ort: Washington, DC
Verlag: American Chemical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Catalysis
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 1
DOI: 10.1021/acscatal.1c03662
Kurzbeschreibung (Abstract):

The presence of defects and chemical dopants in metal-free carbon materials plays an important role in the electrocatalysis of the oxygen reduction reaction (ORR). The precise control and design of defects and dopants in carbon electrodes will allow the fundamental understanding of activity-structure correlations for tailoring catalytic performance of carbon-based, most particularly graphene-based, electrode materials. Herein, we adopted monolayer graphene – a model carbon-based electrode – for systematical introduction of nitrogen and oxygen dopants, together with vacancy defects, and studied their roles in catalyzing ORR. Compared to pristine graphene, nitrogen doping exhibited a limited effect on ORR activity. In contrast, nitrogen doping in graphene predoped with vacancy defects or oxygen enhanced the activities at 0.4 V vs the reversible hydrogen electrode (RHE) by 1.2 and 2.0 times, respectively. The optimal activity was achieved for nitrogen doping in graphene functionalized with oxygenated defects, 12.8 times more than nitrogen-doped and 7.7 times more than pristine graphene. More importantly, oxygenated defects are highly related to the 4e– pathway instead of nitrogen dopants. This work indicates a non-negligible contribution of oxygen and especially oxygenated vacancy defects for the catalytic activity of nitrogen-doped graphene.

Freie Schlagworte: Defects, Impurities, Oxygen, Redox reactions, Two dimensional materials
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 13 Jan 2022 06:30
Letzte Änderung: 15 Mai 2024 09:38
PPN: 51827733X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen