TU Darmstadt / ULB / TUbiblio

High-Throughput Techniques for Measuring the Spin Hall Effect

Meinert, Markus ; Gliniors, Björn ; Gueckstock, Oliver ; Seifert, Tom S. ; Liensberger, Lukas ; Weiler, Mathias ; Wimmer, Sebastian ; Ebert, Hubert ; Kampfrath, Tobias (2020)
High-Throughput Techniques for Measuring the Spin Hall Effect.
In: Physical Review Applied, 14 (6)
doi: 10.1103/PhysRevApplied.14.064011
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The spin Hall effect in heavy-metal thin films is routinely used to convert charge currents into transverse spin currents and can be used to exert torque on adjacent ferromagnets. Conversely, the inverse spin Hall effect is frequently used to detect spin currents by charge currents in spintronic devices up to the terahertz frequency range. Numerous techniques to measure the spin Hall effect or its inverse have been introduced, most of which require extensive sample preparation by multistep lithography. To enable rapid screening of materials in terms of charge-to-spin conversion, suitable high-throughput methods for measuring the spin Hall angle are required. Here we compare two lithography-free techniques, terahertz emission spectroscopy and broadband ferromagnetic resonance, with standard harmonic Hall measurements and theoretical predictions using the binary-alloy series AuxPt1−x as a benchmark system. Despite their being highly complementary, we find that all three techniques yield a spin Hall angle with approximately the same x dependence, which is also consistent with first-principles calculations. Quantitative discrepancies are discussed in terms of magnetization orientation and interfacial spin-memory loss.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Meinert, Markus ; Gliniors, Björn ; Gueckstock, Oliver ; Seifert, Tom S. ; Liensberger, Lukas ; Weiler, Mathias ; Wimmer, Sebastian ; Ebert, Hubert ; Kampfrath, Tobias
Art des Eintrags: Bibliographie
Titel: High-Throughput Techniques for Measuring the Spin Hall Effect
Sprache: Englisch
Publikationsjahr: 3 Dezember 2020
Verlag: APS Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review Applied
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 6
DOI: 10.1103/PhysRevApplied.14.064011
Kurzbeschreibung (Abstract):

The spin Hall effect in heavy-metal thin films is routinely used to convert charge currents into transverse spin currents and can be used to exert torque on adjacent ferromagnets. Conversely, the inverse spin Hall effect is frequently used to detect spin currents by charge currents in spintronic devices up to the terahertz frequency range. Numerous techniques to measure the spin Hall effect or its inverse have been introduced, most of which require extensive sample preparation by multistep lithography. To enable rapid screening of materials in terms of charge-to-spin conversion, suitable high-throughput methods for measuring the spin Hall angle are required. Here we compare two lithography-free techniques, terahertz emission spectroscopy and broadband ferromagnetic resonance, with standard harmonic Hall measurements and theoretical predictions using the binary-alloy series AuxPt1−x as a benchmark system. Despite their being highly complementary, we find that all three techniques yield a spin Hall angle with approximately the same x dependence, which is also consistent with first-principles calculations. Quantitative discrepancies are discussed in terms of magnetization orientation and interfacial spin-memory loss.

Zusätzliche Informationen:

Art.No.: 064011

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Mikrowellentechnik und Photonik (IMP)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Mikrowellentechnik und Photonik (IMP) > Neue Materialien Elektronik
Hinterlegungsdatum: 14 Jan 2022 10:11
Letzte Änderung: 14 Jan 2022 10:11
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen